Programmable Quantum Linear Interference with Pulse Shaping of Quantum Light
- URL: http://arxiv.org/abs/2410.08016v1
- Date: Thu, 10 Oct 2024 15:12:00 GMT
- Title: Programmable Quantum Linear Interference with Pulse Shaping of Quantum Light
- Authors: Aruto Hosaka, Masaya Tomita, Yoshiaki Tsujimoto, Shintaro Niimura, Akihito Omi, Kentaro Wakui, Mikio Fujiwara, Masahiro Takeoka, Fumihiko Kannari,
- Abstract summary: We propose a novel method for interfering frequency-multiplexed photonic quantum states without the use of optical nonlinear effects.
We experimentally demonstrate this technique via frequency-domain Hong-Ou-Mandel (HOM) interference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel method for interfering frequency-multiplexed photonic quantum states without the use of optical nonlinear effects, and experimentally demonstrate this technique via frequency-domain Hong-Ou-Mandel (HOM) interference. By cascading the generation of quantum states onto arbitrary orthogonal modes, we can induce interference across any desired frequency mode. Following the generation of quantum states onto the frequency modes, performing measurements in independent frequency bands enables the realisation of a frequency-domain linear optical circuit analogous to linear interference in the spatial domain. We successfully demonstrated programmable quantum interference by controlling the spectral mode functions and measurement bases. Our method offers a new approach to harness the full potential of light's temporal-frequency degrees of freedom, providing a path towards scalable and programmable photonic quantum computing architectures without the need for optical nonlinearities or spatial-mode beam splitters.
Related papers
- Quantum-like nonlinear interferometry with frequency-engineered classical light [0.0]
We present a "quantum-like" nonlinear optical method that reaches super-resolution in single-photon detection regime.
This is achieved by replacing photon-pairs by coherent states of light, mimicking quantum properties through classical nonlinear optics processes.
arXiv Detail & Related papers (2024-09-18T15:22:25Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Universal quantum frequency comb measurements by spectral mode-matching [39.58317527488534]
We present the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source.
This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect.
arXiv Detail & Related papers (2024-05-28T15:17:21Z) - Programmable Nonlinear Quantum Photonic Circuits [4.524467521100329]
The lack of interactions between single photons prohibits direct nonlinear operations in quantum optical circuits.
We demonstrate multi-mode nonlinear photonic circuits where both linear and direct nonlinear operations can be programmed with high precision at the single-photon level.
arXiv Detail & Related papers (2024-05-28T08:12:18Z) - Tunable generation of spatial entanglement in nonlinear waveguide arrays [0.0]
spatially entangled photon pairs based on parametric down-conversion in AlGaAs nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Efficient simulation of ultrafast quantum nonlinear optics with matrix
product states [0.0]
We develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes.
We observe the development of non-classical Wigner-function negativity in the solitonic mode and quantum corrections to the semiclassical dynamics of the pulse.
arXiv Detail & Related papers (2021-02-11T09:15:24Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.