Programmable interferometer: an application in quantum channels
- URL: http://arxiv.org/abs/2502.18670v2
- Date: Mon, 28 Apr 2025 15:52:49 GMT
- Title: Programmable interferometer: an application in quantum channels
- Authors: J. S. Araujo, K. Khan, A. S. Coelho,
- Abstract summary: In photonics, precise control over light's degrees of freedom, including discrete variables, is fundamental.<n>Our model manipulates photonic systems to encode and process quantum information via the photon's spatial degree of freedom.<n>We propose a programmable photonic circuit that simulates quantum channels, including phase-damping, amplitude-damping, and bit-flip channels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optics plays a crucial role in developing quantum computers on different platforms. In photonics, precise control over light's degrees of freedom, including discrete variables (polarization, photon number, orbital angular momentum) and continuous variables (phase, amplitude quadratures, frequency), is fundamental. Our model manipulates photonic systems to encode and process quantum information via the photon's spatial degree of freedom, employing polarization as an auxiliary qubit. We propose a programmable photonic circuit that simulates quantum channels, including phase-damping, amplitude-damping, and bit-flip channels, through adjustable interferometric parameters. Furthermore, the interferometer extends to complex channels, such as the squeezed generalized amplitude damping. This work contributes to advancing quantum simulation techniques and serves as a foundation for exploring quantum computing applications, while highlighting pathways for their practical implementation.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing [9.095723333008811]
We introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function.
Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns.
arXiv Detail & Related papers (2024-06-07T14:37:45Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Experimental realization of universal quantum gates and six-qubit entangled state using photonic quantum walk [2.2006360539727923]
We experimentally demonstrate the realization of a universal set of quantum gates with high fidelity at room temperature.<n>For a three-qubit system using a single photon, the first qubit is encoded using polarization information, and the other two qubits are encoded using path information.<n>To generate a six-qubit Greenberger-Horne-Zeilinger state, entangled photon pairs are used to entangle the two three-qubit modules.
arXiv Detail & Related papers (2024-03-11T12:32:22Z) - Quantum Computation via Multiport Quantum Fourier Optical Processors [9.992810060555813]
A single photon's image possesses a vast information capacity that can be harnessed for quantum information processing.
This paper employs quantum Fourier optics to implement some key quantum logical gates that can be instrumental in optical quantum computations.
arXiv Detail & Related papers (2023-03-07T13:23:56Z) - An integrated photonic engine for programmable atomic control [29.81784450632149]
Miniaturization of optical components has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices.
We propose and implement a scalable and reconfigurable photonic architecture for multi-channel quantum control using integrated, visible-light modulators.
arXiv Detail & Related papers (2022-08-13T21:12:37Z) - Implementation of photon partial distinguishability in a quantum optical
circuit simulation [0.0]
Photonic quantum states are represented by wavepackets which contain information on their time and frequency distributions.
In order to account for the partial photon distinguishability, we expand the number of degrees of freedom associated with the circuit operation.
This strategy allows to define delay operations in the same footing as the linear optical elements.
arXiv Detail & Related papers (2022-08-05T16:01:39Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.