論文の概要: Strategic Classification With Externalities
- arxiv url: http://arxiv.org/abs/2410.08032v1
- Date: Thu, 10 Oct 2024 15:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:55:13.949369
- Title: Strategic Classification With Externalities
- Title(参考訳): 外部性を考慮した戦略的分類
- Authors: Yiling Chen, Safwan Hossain, Evi Micha, Ariel Procaccia,
- Abstract要約: 戦略分類問題の新しい変種を提案する。
実世界のアプリケーションによって動機づけられた我々のモデルは、あるエージェントの操作が他のエージェントに影響を与えることを決定的に許している。
特定の仮定の下では、このエージェント操作ゲームの純粋なナッシュ平衡はユニークであり、効率的に計算できることが示される。
- 参考スコア(独自算出の注目度): 11.36782598786846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new variant of the strategic classification problem: a principal reveals a classifier, and $n$ agents report their (possibly manipulated) features to be classified. Motivated by real-world applications, our model crucially allows the manipulation of one agent to affect another; that is, it explicitly captures inter-agent externalities. The principal-agent interactions are formally modeled as a Stackelberg game, with the resulting agent manipulation dynamics captured as a simultaneous game. We show that under certain assumptions, the pure Nash Equilibrium of this agent manipulation game is unique and can be efficiently computed. Leveraging this result, PAC learning guarantees are established for the learner: informally, we show that it is possible to learn classifiers that minimize loss on the distribution, even when a random number of agents are manipulating their way to a pure Nash Equilibrium. We also comment on the optimization of such classifiers through gradient-based approaches. This work sets the theoretical foundations for a more realistic analysis of classifiers that are robust against multiple strategic actors interacting in a common environment.
- Abstract(参考訳): 本稿では, 戦略分類問題の新たな変種として, プリンシパルが分類器を明らかにし, エージェントが分類対象となる特徴を報告する。
実世界のアプリケーションによって動機づけられた我々のモデルは、あるエージェントの操作が他のエージェントに影響を与えることを決定的に許している。
主エージェントとエージェントの相互作用は公式にStackelbergゲームとしてモデル化され、結果としてエージェント操作ダイナミクスは同時ゲームとしてキャプチャされる。
特定の仮定の下では、このエージェント操作ゲームの純粋なナッシュ平衡はユニークであり、効率的に計算できることが示される。
この結果を利用して、PAC学習保証が学習者に確立される。非公式に、ランダムな数のエージェントが純粋なNash平衡に操作している場合でも、分布の損失を最小限に抑える分類器を学習できることが示される。
また、勾配に基づくアプローチによる分類器の最適化についてもコメントする。
この研究は、共通の環境で相互作用する複数の戦略的アクターに対して堅牢な分類器のより現実的な分析の理論的基礎を定めている。
関連論文リスト
- Bayesian Strategic Classification [11.439576371711711]
戦略分類における学習者による部分的情報公開の研究について検討する。
エージェントの操作能力を高めつつも,そのような部分的な情報公開が学習者の正確さにどのように寄与するかを示す。
論文 参考訳(メタデータ) (2024-02-13T19:51:49Z) - Learning and Calibrating Heterogeneous Bounded Rational Market Behaviour
with Multi-Agent Reinforcement Learning [4.40301653518681]
エージェントベースモデル(ABM)は、従来の平衡解析と相容れない様々な実世界の現象をモデル化することを約束している。
マルチエージェント強化学習(MARL)の最近の進歩は、合理性の観点からこの問題に対処する方法を提供する。
MARLフレームワーク内で不均一な処理制約を持つエージェントを表現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T17:21:45Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
本研究では,先見のつかない学習エージェントの報酬を効率よく効果的に介入し,望ましい結果を導き出す方法について検討する。
これはオークションや課税のような現実世界の多くの設定に関係しており、プリンシパルは学習行動や実際の人々の報酬を知らないかもしれない。
モデルに基づくメタ学習フレームワークであるMERMAIDEを導入し,配布外エージェントに迅速に適応できるプリンシパルを訓練する。
論文 参考訳(メタデータ) (2023-04-10T15:44:50Z) - Learning in Stackelberg Games with Non-myopic Agents [60.927889817803745]
そこで本研究では,主役が非筋力的な長寿命エージェントと繰り返し対話するスタックルバーグゲームについて,エージェントの支払関数を知らずに検討する。
我々は、非ミオピックエージェントの存在下での学習を、ミオピックエージェントの存在下で堅牢な帯域最適化に還元する一般的なフレームワークを提供する。
論文 参考訳(メタデータ) (2022-08-19T15:49:30Z) - Homomorphism Autoencoder -- Learning Group Structured Representations from Observed Transitions [51.71245032890532]
本研究では,世界に作用するエージェントが,それを修飾する動作と整合した感覚情報の内部表現を学習できるようにする手法を提案する。
既存の作業とは対照的に、我々のアプローチはグループの事前の知識を必要とせず、エージェントが実行可能なアクションのセットを制限しない。
論文 参考訳(メタデータ) (2022-07-25T11:22:48Z) - Decentralized scheduling through an adaptive, trading-based multi-agent
system [1.7403133838762448]
多エージェント強化学習システムでは、あるエージェントの動作が他のエージェントの報酬に悪影響を及ぼす可能性がある。
この作業は、エージェントが入ってくるジョブをコアに割り当てる責任を負うシミュレーションスケジューリング環境に、トレーディングアプローチを適用します。
エージェントは計算コアの使用権を交換して、低優先度で低報酬のジョブよりも高速に、高利益のジョブを処理できる。
論文 参考訳(メタデータ) (2022-07-05T13:50:18Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z) - Learning to Model Opponent Learning [11.61673411387596]
マルチエージェント強化学習(MARL: Multi-Agent Reinforcement Learning)は、一組の共存エージェントが相互とその環境と相互作用する設定を考える。
これは、通常、収束が定常環境の仮定に依存する値関数ベースのアルゴリズムにとって大きな課題となる。
我々は、モデルポンポント学習(LeMOL)と呼ばれる、対戦者の学習力学をモデル化するための新しいアプローチを開発する。
論文 参考訳(メタデータ) (2020-06-06T17:19:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。