論文の概要: Learning in Stackelberg Games with Non-myopic Agents
- arxiv url: http://arxiv.org/abs/2208.09407v2
- Date: Thu, 07 Nov 2024 18:35:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:51:59.222977
- Title: Learning in Stackelberg Games with Non-myopic Agents
- Title(参考訳): 非ミオピックエージェントを用いたスタックルバーグゲームにおける学習
- Authors: Nika Haghtalab, Thodoris Lykouris, Sloan Nietert, Alexander Wei,
- Abstract要約: そこで本研究では,主役が非筋力的な長寿命エージェントと繰り返し対話するスタックルバーグゲームについて,エージェントの支払関数を知らずに検討する。
我々は、非ミオピックエージェントの存在下での学習を、ミオピックエージェントの存在下で堅牢な帯域最適化に還元する一般的なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 60.927889817803745
- License:
- Abstract: We study Stackelberg games where a principal repeatedly interacts with a non-myopic long-lived agent, without knowing the agent's payoff function. Although learning in Stackelberg games is well-understood when the agent is myopic, dealing with non-myopic agents poses additional complications. In particular, non-myopic agents may strategize and select actions that are inferior in the present in order to mislead the principal's learning algorithm and obtain better outcomes in the future. We provide a general framework that reduces learning in presence of non-myopic agents to robust bandit optimization in the presence of myopic agents. Through the design and analysis of minimally reactive bandit algorithms, our reduction trades off the statistical efficiency of the principal's learning algorithm against its effectiveness in inducing near-best-responses. We apply this framework to Stackelberg security games (SSGs), pricing with unknown demand curve, general finite Stackelberg games, and strategic classification. In each setting, we characterize the type and impact of misspecifications present in near-best responses and develop a learning algorithm robust to such misspecifications. On the way, we improve the state-of-the-art query complexity of learning in SSGs with $n$ targets from $O(n^3)$ to a near-optimal $\widetilde{O}(n)$ by uncovering a fundamental structural property of these games. The latter result is of independent interest beyond learning with non-myopic agents.
- Abstract(参考訳): そこで本研究では,主役が非筋力的な長寿命エージェントと繰り返し対話するスタックルバーグゲームについて,エージェントの支払関数を知らずに検討する。
Stackelbergゲームでの学習は、エージェントがミオピックであるときによく理解されているが、非ミオピックエージェントの扱いは、さらなる合併症を引き起こす。
特に、非神秘的エージェントは、プリンシパルの学習アルゴリズムを誤解させ、将来のより良い結果を得るために、現在において劣っているアクションを戦略化し、選択することができる。
我々は、非ミオピックエージェントの存在下での学習を、ミオピックエージェントの存在下で堅牢な帯域最適化に還元する一般的なフレームワークを提供する。
最小反応性バンディットアルゴリズムの設計と解析を通じて,本手法は主学習アルゴリズムの統計的効率と,その近親感誘導効果とをトレードオフする。
このフレームワークをStackelbergセキュリティゲーム(SSG)に適用し、要求曲線の未知の価格、一般有限スタックルバーグゲーム、戦略分類に適用する。
各設定において、最寄りの応答に存在する誤特定の種類と影響を特徴付け、そのような誤特定に頑健な学習アルゴリズムを開発する。
その過程で、SSGの学習における最先端のクエリの複雑さを改善し、$O(n^3)$から$\widetilde{O}(n)$に近い最適の$\widetilde{O}(n)$へのターゲットを$n$とする。
後者の結果は、非神秘的なエージェントで学ぶこと以上の、独立した関心を持っている。
関連論文リスト
- Strategic Classification With Externalities [11.36782598786846]
戦略分類問題の新しい変種を提案する。
実世界のアプリケーションによって動機づけられた我々のモデルは、あるエージェントの操作が他のエージェントに影響を与えることを決定的に許している。
特定の仮定の下では、このエージェント操作ゲームの純粋なナッシュ平衡はユニークであり、効率的に計算できることが示される。
論文 参考訳(メタデータ) (2024-10-10T15:28:04Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
本稿では,対戦相手と防御エージェントの反復的相互作用を含む2エージェントゲームのレンズによるアライメントについて検討する。
この反復的強化学習最適化がエージェントによって誘導されるゲームに対するナッシュ平衡に収束することを理論的に実証する。
安全シナリオにおける実験結果から、このような競争環境下での学習は、完全に訓練するエージェントだけでなく、敵エージェントと防御エージェントの両方に対する一般化能力の向上したポリシーにつながることが示されている。
論文 参考訳(メタデータ) (2024-06-16T15:24:50Z) - Paths to Equilibrium in Games [6.812247730094933]
我々は、強化学習におけるポリシー更新に触発されたペアワイズ制約を満たす戦略の列について研究する。
我々の分析は、戦略的な更新を劣化させる報酬が、満足のいく道に沿って均衡に進むための鍵である、という直感的な洞察を明らかにした。
論文 参考訳(メタデータ) (2024-03-26T19:58:39Z) - Impact of Decentralized Learning on Player Utilities in Stackelberg Games [57.08270857260131]
多くの2エージェントシステムでは、各エージェントは別々に学習し、2つのエージェントの報酬は完全に一致しない。
分散学習を用いたStackelbergゲームとしてこれらのシステムをモデル化し、標準後悔ベンチマークが少なくとも1人のプレイヤーにとって最悪の線形後悔をもたらすことを示す。
我々は,これらのベンチマークに関して,両プレイヤーにとってほぼ最適な$O(T2/3)を後悔するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-29T23:38:28Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
本研究では,先見のつかない学習エージェントの報酬を効率よく効果的に介入し,望ましい結果を導き出す方法について検討する。
これはオークションや課税のような現実世界の多くの設定に関係しており、プリンシパルは学習行動や実際の人々の報酬を知らないかもしれない。
モデルに基づくメタ学習フレームワークであるMERMAIDEを導入し,配布外エージェントに迅速に適応できるプリンシパルを訓練する。
論文 参考訳(メタデータ) (2023-04-10T15:44:50Z) - Learning to Incentivize Information Acquisition: Proper Scoring Rules
Meet Principal-Agent Model [64.94131130042275]
インセンティブ付き情報取得問題について検討し、主治官がエージェントを雇って代理情報を収集する。
UCBアルゴリズムをモデルに適合させる,実証可能なサンプル効率の良いアルゴリズムを設計する。
本アルゴリズムは,主役の最適利益に対する微妙な推定手順と,所望のエージェントの行動にインセンティブを与える保守的な補正手法を特徴とする。
論文 参考訳(メタデータ) (2023-03-15T13:40:16Z) - Disturbing Reinforcement Learning Agents with Corrupted Rewards [62.997667081978825]
強化学習アルゴリズムに対する報酬の摂動に基づく異なる攻撃戦略の効果を分析します。
敵対的な報酬をスムーズに作成することは学習者を誤解させることができ、低探査確率値を使用すると、学習した政策は報酬を腐敗させるのがより堅牢であることを示しています。
論文 参考訳(メタデータ) (2021-02-12T15:53:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。