Optimal Transportation by Orthogonal Coupling Dynamics
- URL: http://arxiv.org/abs/2410.08060v1
- Date: Thu, 10 Oct 2024 15:53:48 GMT
- Title: Optimal Transportation by Orthogonal Coupling Dynamics
- Authors: Mohsen Sadr, Peyman Mohajerin Esfehani, Hossein Gorji,
- Abstract summary: We propose a novel framework to address the Monge-Kantorovich problem based on a projection type gradient descent scheme.
The micro-dynamics is built on the notion of the conditional expectation, where the connection with the opinion dynamics is explored.
We demonstrate that the devised dynamics recovers random maps with favourable computational performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many numerical algorithms and learning tasks rest on solution of the Monge-Kantorovich problem and corresponding Wasserstein distances. While the natural approach is to treat the problem as an infinite-dimensional linear programming, such a methodology severely limits the computational performance due to the polynomial scaling with respect to the sample size along with intensive memory requirements. We propose a novel alternative framework to address the Monge-Kantorovich problem based on a projection type gradient descent scheme. The micro-dynamics is built on the notion of the conditional expectation, where the connection with the opinion dynamics is explored and leveraged to build compact numerical schemes. We demonstrate that the devised dynamics recovers random maps with favourable computational performance. Along with the theoretical insight, the provided dynamics paves the way for innovative approaches to construct numerical schemes for computing optimal transport maps as well as Wasserstein distances.
Related papers
- Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference [1.740133468405535]
We present two neural network approaches that approximate the solutions of static and conditional optimal transport (COT) problems.
We demonstrate both algorithms, comparing them with competing state-the-art approaches, using benchmark datasets and simulation-based inverse problems.
arXiv Detail & Related papers (2023-10-25T20:20:09Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
We propose a cheap alternative to popular deep learning algorithms for temporal modeling.
Our method is highly competitive compared with state-of-the-art solvers.
arXiv Detail & Related papers (2023-04-19T13:50:13Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - Critic Sequential Monte Carlo [15.596665321375298]
CriticSMC is a new algorithm for planning as inference built from a novel composition of sequential Monte Carlo with soft-Q function factors.
Our experiments on self-driving car collision avoidance in simulation demonstrate improvements against baselines in terms of minimization of infraction relative to computational effort.
arXiv Detail & Related papers (2022-05-30T23:14:24Z) - Dynamic Origin-Destination Matrix Estimation in Urban Traffic Networks [0.05735035463793007]
We model the problem as a bi-level optimization problem.
In the inner level, given a tentative travel demand, we solve a dynamic traffic assignment problem to decide the routing of the users between their origins and destinations.
In the outer level, we adjust the number of trips and their origins and destinations, aiming at minimizing the discrepancy between the counters generated in the inner level and the given vehicle counts measured by sensors in the traffic network.
arXiv Detail & Related papers (2022-01-31T21:33:46Z) - Adaptive Projected Residual Networks for Learning Parametric Maps from
Sparse Data [5.920947681019466]
We present a parsimonious surrogate framework for learning high dimensional parametric maps from limited training data.
These applications include such "outer-loop" problems as Bayesian inverse problems, optimal experimental design, and optimal design and control under uncertainty.
arXiv Detail & Related papers (2021-12-14T01:29:19Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.