論文の概要: Gaussian Process Thompson Sampling via Rootfinding
- arxiv url: http://arxiv.org/abs/2410.08071v1
- Date: Thu, 10 Oct 2024 16:06:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:35:21.302382
- Title: Gaussian Process Thompson Sampling via Rootfinding
- Title(参考訳): ルートフィンディングによるガウス過程トンプソンサンプリング
- Authors: Taiwo A. Adebiyi, Bach Do, Ruda Zhang,
- Abstract要約: トンプソンサンプリング(Thompson sample, TS)は、ベイズ決定における単純かつ効果的な政策である。
連続最適化では、目的関数の後方はしばしばガウス過程(GP)であり、サンプルパスは多数の局所最適値を持つ。
本稿では,勾配に基づくマルチスタートの開始点を慎重に選択するGP-TSの効率的なグローバル最適化手法を提案する。
- 参考スコア(独自算出の注目度): 2.94944680995069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thompson sampling (TS) is a simple, effective stochastic policy in Bayesian decision making. It samples the posterior belief about the reward profile and optimizes the sample to obtain a candidate decision. In continuous optimization, the posterior of the objective function is often a Gaussian process (GP), whose sample paths have numerous local optima, making their global optimization challenging. In this work, we introduce an efficient global optimization strategy for GP-TS that carefully selects starting points for gradient-based multi-start optimizers. It identifies all local optima of the prior sample via univariate global rootfinding, and optimizes the posterior sample using a differentiable, decoupled representation. We demonstrate remarkable improvement in the global optimization of GP posterior samples, especially in high dimensions. This leads to dramatic improvements in the overall performance of Bayesian optimization using GP-TS acquisition functions, surprisingly outperforming alternatives like GP-UCB and EI.
- Abstract(参考訳): トンプソンサンプリング(Thompson sample, TS)は、ベイズ決定における単純で効果的な確率的政策である。
報酬プロファイルに関する後続の信念をサンプリングし、サンプルを最適化して候補決定を得る。
連続最適化では、目的関数の後方はしばしばガウス過程(GP)であり、サンプルパスは多数の局所最適値を持ち、大域的最適化は困難である。
本研究では,勾配に基づくマルチスタートオプティマイザの開始点を慎重に選択するGP-TSの効率的なグローバル最適化手法を提案する。
単変量大域ルートフィンディングにより、前のサンプルの局所的な最適化を識別し、微分可能で分離された表現を用いて後部サンプルを最適化する。
GP後部サンプルの大域的最適化は特に高次元で顕著に改善された。
これにより、GP-TS 取得関数を用いたベイズ最適化全体の性能が劇的に向上し、GP-UCB や EI などの代替よりも驚くほど向上した。
関連論文リスト
- Optimizing Posterior Samples for Bayesian Optimization via Rootfinding [2.94944680995069]
我々は,グローバルなルートフィンディングに基づく後方サンプルの効率的な大域的最適化手法を提案する。
内ループ最適化と外ループ最適化の両方において顕著な改善が示された。
GP-TSのサンプル平均定式化も提案する。
論文 参考訳(メタデータ) (2024-10-29T17:57:16Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling [0.0]
多目的最適化を解くためのサンプル効率のアプローチは、プロセス・オラクル・サロゲート(GP)とMOBOOTS$である。
我々はトンプソンサンプリング(TS)に基づくアプローチ(qtextttPOTS$)を提案する。
$qtextttPOTS$は、GP後部の安価な多目的最適化を進化的アプローチで解決する。
論文 参考訳(メタデータ) (2023-10-24T12:35:15Z) - Random Postprocessing for Combinatorial Bayesian Optimization [0.552480439325792]
ベイズ最適化における後処理法の効果を数値的に検討する。
ポストプロセッシング法は,グローバルな最適解を見つけるための逐次ステップの数を著しく削減する。
論文 参考訳(メタデータ) (2023-09-06T08:59:34Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
Processes [0.0]
空間統計学から一般的なGP近似であるVecchia近似を適用し、スケーラブルな高次元ベイズ最適化を実現する。
我々は、トンプソンサンプリングによる信頼領域ベイズ最適化における歪んだヴェッキアGPの使用に焦点を当てた。
論文 参考訳(メタデータ) (2022-03-02T23:55:14Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。