論文の概要: qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling
- arxiv url: http://arxiv.org/abs/2310.15788v2
- Date: Sun, 27 Oct 2024 17:19:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:13:37.956922
- Title: qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling
- Title(参考訳): qPOTS: Pareto 最適トンプソンサンプリングによる効率的なバッチ多目的ベイズ最適化
- Authors: S. Ashwin Renganathan, Kade E. Carlson,
- Abstract要約: 多目的最適化を解くためのサンプル効率のアプローチは、プロセス・オラクル・サロゲート(GP)とMOBOOTS$である。
我々はトンプソンサンプリング(TS)に基づくアプローチ(qtextttPOTS$)を提案する。
$qtextttPOTS$は、GP後部の安価な多目的最適化を進化的アプローチで解決する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Classical evolutionary approaches for multiobjective optimization are quite accurate but incur a lot of queries to the objectives; this can be prohibitive when objectives are expensive oracles. A sample-efficient approach to solving multiobjective optimization is via Gaussian process (GP) surrogates and Bayesian optimization (BO). Multiobjective Bayesian optimization (MOBO) involves the construction of an acquisition function which is optimized to acquire new observation candidates sequentially. This ``inner'' optimization can be hard due to various reasons: acquisition functions being nonconvex, nondifferentiable and/or unavailable in analytical form; batch sampling usually exacerbates these problems and the success of MOBO heavily relies on this inner optimization. This, ultimately, affects their sample efficiency. To overcome these challenges, we propose a Thompson sampling (TS) based approach ($q\texttt{POTS}$). Whereas TS chooses candidates according to the probability that they are optimal, $q\texttt{POTS}$ chooses candidates according to the probability that they are Pareto optimal. Instead of a hard acquisition function optimization, $q\texttt{POTS}~$ solves a cheap multiobjective optimization on the GP posteriors with evolutionary approaches. This way we get the best of both worlds: accuracy of evolutionary approaches and sample-efficiency of MOBO. New candidates are chosen on the posterior GP Pareto frontier according to a maximin distance criterion. $q\texttt{POTS}~$ is endowed with theoretical guarantees, a natural exploration-exploitation trade-off and, superior accuracy and sample efficiency than its competitors based on synthetic as well as real-world experiments.
- Abstract(参考訳): 多目的最適化の古典的進化的アプローチは非常に正確であるが、目的に対して多くのクエリを発生させる。
多目的最適化を解くためのサンプル効率のアプローチは、ガウス過程 (GP) シュロゲートとベイズ最適化 (BO) である。
多目的ベイズ最適化(MOBO)は、新しい観測候補を逐次取得するために最適化された取得関数の構築を伴う。
この `inner'' の最適化は、様々な理由により困難である: 取得関数は非凸であり、微分不可能であり、分析形式では利用できない; バッチサンプリングは通常これらの問題を悪化させ、MOBO の成功はこの内部最適化に大きく依存する。
これは最終的にサンプル効率に影響を及ぼす。
これらの課題を克服するために、トンプソンサンプリング(TS)に基づくアプローチ(q\texttt{POTS}$)を提案する。
TSが最適である確率に応じて候補を選択するのに対し、$q\texttt{POTS}$はパレート最適である確率に応じて候補を選択する。
ハード取得関数の最適化の代わりに$q\texttt{POTS}~$は、GP後部の安価な多目的最適化を進化的アプローチで解決する。
進化的アプローチの正確さとMOBOのサンプル効率です。
新しい候補は、最大距離基準に従って、後方GPパレートフロンティアに選択される。
$q\texttt{POTS}~$は、理論的な保証、自然の探査と探索のトレードオフ、そして合成や実世界の実験に基づく競合製品よりも優れた精度とサンプル効率が与えられている。
関連論文リスト
- $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization [91.43730624072226]
$f$-POは、既存のアプローチを一般化し拡張する新しいフレームワークである。
ベンチマークデータセットを用いて最先端言語モデルの実験を行う。
論文 参考訳(メタデータ) (2024-10-29T02:11:45Z) - Gaussian Process Thompson Sampling via Rootfinding [2.94944680995069]
トンプソンサンプリング(Thompson sample, TS)は、ベイズ決定における単純かつ効果的な政策である。
連続最適化では、目的関数の後方はしばしばガウス過程(GP)であり、サンプルパスは多数の局所最適値を持つ。
本稿では,勾配に基づくマルチスタートの開始点を慎重に選択するGP-TSの効率的なグローバル最適化手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:06:45Z) - Batched Bayesian optimization with correlated candidate uncertainties [44.38372821900645]
純粋に活用する qPO (multipoint of Optimality) による離散最適化のための獲得戦略を提案する。
本研究では, 大規模化学ライブラリのモデル誘導探索に適用し, バッチ化ベイズ最適化における最先端手法と同等以上の性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-08T20:13:12Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
競合する、計算的により効率的でグローバルな最適化フレームワークは楽観的な最適化であり、これは探索空間の幾何学に関する事前知識を相似関数として利用している。
幾何的探索と確率的探索の間には新たな研究領域があり、ベイズ最適化の重要な機能を保ちながら、従来のベイズ最適化よりも大幅に高速に実行される方法がある。
論文 参考訳(メタデータ) (2022-09-02T09:06:24Z) - Dynamic Multi-objective Ensemble of Acquisition Functions in Batch
Bayesian Optimization [1.1602089225841632]
獲得関数は最適化プロセスにおいて重要な役割を果たす。
3つの取得関数は、その現在のパフォーマンスと過去のパフォーマンスに基づいて、セットから動的に選択される。
進化的多目的アルゴリズムを用いて、そのようなMOPを最適化し、非支配的な解の集合を得ることができる。
論文 参考訳(メタデータ) (2022-06-22T14:09:18Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - $\{\text{PF}\}^2\text{ES}$: Parallel Feasible Pareto Frontier Entropy
Search for Multi-Objective Bayesian Optimization Under Unknown Constraints [4.672142224503371]
本稿では,多目的ベイズ最適化のための情報理論獲得関数を提案する。
$textPF2$ESは、並列設定のための相互情報の低コストで正確な見積もりを提供する。
合成問題と実生活問題で$textPF2$ESをベンチマークします。
論文 参考訳(メタデータ) (2022-04-11T21:06:23Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。