論文の概要: SAKA: An Intelligent Platform for Semi-automated Knowledge Graph Construction and Application
- arxiv url: http://arxiv.org/abs/2410.08094v2
- Date: Sun, 15 Dec 2024 09:20:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:50:50.589401
- Title: SAKA: An Intelligent Platform for Semi-automated Knowledge Graph Construction and Application
- Title(参考訳): 坂:半自動知識グラフ構築と応用のためのインテリジェントプラットフォーム
- Authors: Hanrong Zhang, Xinyue Wang, Jiabao Pan, Hongwei Wang,
- Abstract要約: 半自動KG構築・アプリケーション(saka)のためのインテリジェントでユーザフレンドリーなプラットフォームを提案する。
音声データからKGを確立するために,音声に基づくKG情報抽出(AGIE)手法を提案する。
坂プラットフォーム上での半自動KG工法の有効性を実証する。
- 参考スコア(独自算出の注目度): 7.252037991481906
- License:
- Abstract: Knowledge graph (KG) technology is extensively utilized in many areas, and many companies offer applications based on KG. Nonetheless, most KG platforms necessitate expertise and tremendous time and effort from users to construct KG records manually, which poses great difficulties for ordinary people. Additionally, audio data is abundant and holds valuable information, but it is challenging to transform it into a KG. What's more, the platforms usually do not leverage the full potential of the KGs constructed by users. In this paper, we propose an intelligent and user-friendly platform for Semi-automated KG Construction and Application (SAKA) to address the aforementioned problems. Primarily, users can semi-automatically construct KGs from structured data of numerous areas by interacting with the platform, based on which multi-versions of KG can be stored, viewed, managed, and updated. Moreover, we propose an Audio-based KG Information Extraction (AGIE) method to establish KGs from audio data. Lastly, the platform creates a semantic parsing-based knowledge base question answering (KBQA) system based on the user-created KGs. We prove the feasibility of the semi-automatic KG construction method on the SAKA platform.
- Abstract(参考訳): 知識グラフ(KG)技術は多くの分野で広く利用されており、多くの企業がKGに基づくアプリケーションを提供している。
それでも、ほとんどのKGプラットフォームは、KGレコードを手作業で構築するために、専門知識と膨大な時間と労力を必要とするため、一般人にとっては非常に困難である。
さらに、音声データは豊富で貴重な情報を持っているが、それをKGに変換することは困難である。
さらに、プラットフォームは通常、ユーザが構築したKGのポテンシャルを最大限に活用しません。
本稿では,上述の問題に対処するため,半自動KG構築・アプリケーション(saka)のためのインテリジェントでユーザフレンドリなプラットフォームを提案する。
ユーザは、KGのマルチバージョンを格納、閲覧、管理、更新可能なプラットフォームをベースとして、さまざまな領域の構造データからKGを半自動で構築することができる。
さらに,音声データからKGを確立するために,Audio-based KG Information extract (AGIE)法を提案する。
最後に、ユーザが作成したKGに基づいて、意味解析に基づく知識ベース質問応答(KBQA)システムを作成する。
坂プラットフォーム上での半自動KG工法の有効性を実証する。
関連論文リスト
- Learning Rules from KGs Guided by Language Models [48.858741745144044]
ルール学習手法は、潜在的に欠落する事実を予測するために適用することができる。
規則のランク付けは、高度に不完全あるいは偏りのあるKGよりも特に難しい。
近年のLanguage Models (LM) の台頭により、いくつかの研究が、LMがKG補完の代替手段として利用できると主張している。
論文 参考訳(メタデータ) (2024-09-12T09:27:36Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
我々は、KG-Agentと呼ばれる自律LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合する。
有効性を保証するため、プログラム言語を利用してKG上のマルチホップ推論プロセスを定式化する。
論文 参考訳(メタデータ) (2024-02-17T02:07:49Z) - FedMKGC: Privacy-Preserving Federated Multilingual Knowledge Graph
Completion [21.4302940596294]
知識グラフ補完(KGC)は、知識グラフ(KG)の欠落事実を予測することを目的とする。
KG間で生データを転送することに依存する従来の方法は、プライバシー上の懸念を提起している。
我々は、生データ交換やエンティティアライメントを必要とせずに、複数のKGから暗黙的に知識を集約する新しい連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-17T08:09:27Z) - An Open-Source Knowledge Graph Ecosystem for the Life Sciences [5.665519167428707]
PheKnowLatorは、存在論的基盤を持つ知識グラフの構築を自動化するセマンティックエコシステムである。
エコシステムには、KG構築リソース、分析ツール、ベンチマークが含まれている。
PheKnowLatorは、パフォーマンスやユーザビリティを損なうことなく、完全にカスタマイズ可能なKGを可能にする。
論文 参考訳(メタデータ) (2023-07-11T18:55:09Z) - Construction of Knowledge Graphs: State and Challenges [2.245333517888782]
本稿では,知識グラフ(KG)の主要グラフモデルについて論じ,今後のKG構築パイプラインの要件について紹介する。
次に、メタデータ管理などの横断的なトピックを含む高品質なKGを構築するために必要な手順の概要を紹介する。
我々は、KG構築技術の現状を評価するとともに、KG構築のための最近のツールや戦略と同様に、特定の人気KGに対して導入された要件について評価する。
論文 参考訳(メタデータ) (2023-02-22T17:26:03Z) - Construction and Applications of Billion-Scale Pre-Trained Multimodal
Business Knowledge Graph [64.42060648398743]
我々は、よく知られた企業であるAlibaba Groupから派生したオープンビジネス知識グラフ(OpenBG)を構築するプロセスを紹介する。
OpenBGは前例のない規模のオープンビジネスのKGで、260億の3倍体で、100万以上のコアクラス/コンセプトと2,681種類の関係をカバーしている。
論文 参考訳(メタデータ) (2022-09-30T04:03:26Z) - Reasoning over Multi-view Knowledge Graphs [59.99051368907095]
ROMAは、マルチビューKG上で論理クエリに応答する新しいフレームワークである。
大規模(数百万の事実など)のKGや粒度の細かいビューまでスケールする。
トレーニング中に観測されていない構造やKGビューのクエリを一般化する。
論文 参考訳(メタデータ) (2022-09-27T21:32:20Z) - Identify, Align, and Integrate: Matching Knowledge Graphs to Commonsense
Reasoning Tasks [81.03233931066009]
与えられたタスクの目的に整合した知識グラフ(KG)を選択することは重要である。
候補者KGがタスクの推論のギャップを正しく識別し、正確に埋めることができるかを評価するアプローチを示す。
このkg-to-taskマッチングを,知識-タスク識別,知識-タスクアライメント,知識-タスク統合という3つのフェーズで示す。
論文 参考訳(メタデータ) (2021-04-20T18:23:45Z) - Language Models are Open Knowledge Graphs [75.48081086368606]
近年の深層言語モデルは,事前学習を通じて大規模コーパスから知識を自動取得する。
本稿では,言語モデルに含まれる知識をKGにキャストするための教師なし手法を提案する。
KGは、コーパス上の(微調整なしで)事前訓練された言語モデルの1つの前方パスで構築されていることを示す。
論文 参考訳(メタデータ) (2020-10-22T18:01:56Z) - Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer [43.453915033312114]
知識グラフ(KG)に欠けている事実を予測することは、知識ベースの構築と推論において重要なタスクである。
KEnSは、学習と知識のアンサンブルを複数の言語固有のKGに組み込むための新しいフレームワークである。
5つの実世界の言語固有のKGの実験により、KEnSはKG完了に関する最先端の手法を一貫して改善していることが示された。
論文 参考訳(メタデータ) (2020-10-07T04:54:03Z) - KGTK: A Toolkit for Large Knowledge Graph Manipulation and Analysis [9.141014703209494]
KGTKは、KGを表現、生成、変換、拡張、分析するために設計されたデータサイエンス中心のツールキットである。
我々はKGTKを使ってWikidataやDBpedia、ConceptNetといった大規模なKGを統合・操作する現実世界のシナリオでこのフレームワークを説明します。
論文 参考訳(メタデータ) (2020-05-29T21:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。