Multi-Agent Collaborative Data Selection for Efficient LLM Pretraining
- URL: http://arxiv.org/abs/2410.08102v2
- Date: Mon, 14 Oct 2024 14:22:30 GMT
- Title: Multi-Agent Collaborative Data Selection for Efficient LLM Pretraining
- Authors: Tianyi Bai, Ling Yang, Zhen Hao Wong, Jiahui Peng, Xinlin Zhuang, Chi Zhang, Lijun Wu, Jiantao Qiu, Wentao Zhang, Binhang Yuan, Conghui He,
- Abstract summary: We propose a novel multi-agent collaborative data selection mechanism for large language models (LLMs) pretraining.
In this framework, each data selection method serves as an independent agent, and an agent console is designed to dynamically integrate the information from all agents.
- Score: 40.21546440726592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient data selection is crucial to accelerate the pretraining of large language models (LLMs). While various methods have been proposed to enhance data efficiency, limited research has addressed the inherent conflicts between these approaches to achieve optimal data selection for LLM pretraining. To tackle this problem, we propose a novel multi-agent collaborative data selection mechanism. In this framework, each data selection method serves as an independent agent, and an agent console is designed to dynamically integrate the information from all agents throughout the LLM training process. We conduct extensive empirical studies to evaluate our multi-agent framework. The experimental results demonstrate that our approach significantly improves data efficiency, accelerates convergence in LLM training, and achieves an average performance gain up to 10.5% across multiple language model benchmarks compared to the state-of-the-art methods.
Related papers
- PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection [28.442470930703337]
PRISM is a training-free approach for efficient multimodal data selection.
It uses Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs.
It reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods.
arXiv Detail & Related papers (2025-02-17T18:43:41Z) - Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data [36.277423093218275]
We study the role of data diversity in enhancing the overall abilities of large language models (LLMs)
We propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data.
arXiv Detail & Related papers (2025-02-05T17:21:01Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.
We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.
Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.
Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.
We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.