Robust AI-Generated Text Detection by Restricted Embeddings
- URL: http://arxiv.org/abs/2410.08113v1
- Date: Thu, 10 Oct 2024 16:58:42 GMT
- Title: Robust AI-Generated Text Detection by Restricted Embeddings
- Authors: Kristian Kuznetsov, Eduard Tulchinskii, Laida Kushnareva, German Magai, Serguei Barannikov, Sergey Nikolenko, Irina Piontkovskaya,
- Abstract summary: We focus on robustness of detectors of AI-generated text, namely their ability to transfer to unseen generators or semantic domains.
We show that clearing out harmful linear subspaces helps to train a robust classifier, ignoring domain-specific spurious features.
Our best approaches for head-wise and coordinate-based subspace removal increase the mean out-of-distribution (OOD) classification score by up to 9% and 14% in particular.
- Score: 6.745955674138081
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Growing amount and quality of AI-generated texts makes detecting such content more difficult. In most real-world scenarios, the domain (style and topic) of generated data and the generator model are not known in advance. In this work, we focus on the robustness of classifier-based detectors of AI-generated text, namely their ability to transfer to unseen generators or semantic domains. We investigate the geometry of the embedding space of Transformer-based text encoders and show that clearing out harmful linear subspaces helps to train a robust classifier, ignoring domain-specific spurious features. We investigate several subspace decomposition and feature selection strategies and achieve significant improvements over state of the art methods in cross-domain and cross-generator transfer. Our best approaches for head-wise and coordinate-based subspace removal increase the mean out-of-distribution (OOD) classification score by up to 9% and 14% in particular setups for RoBERTa and BERT embeddings respectively. We release our code and data: https://github.com/SilverSolver/RobustATD
Related papers
- Detecting AI-Generated Texts in Cross-Domains [3.2245324254437846]
We train a ranking classifier called RoBERTa-Ranker as a baseline model.
We then present a method to fine-tune RoBERTa-Ranker that requires only a small amount of labeled data in a new domain.
Experiments show that this fine-tuned domain-aware model outperforms the popular DetectGPT and GPTZero.
arXiv Detail & Related papers (2024-10-17T18:43:30Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - Are AI-Generated Text Detectors Robust to Adversarial Perturbations? [9.001160538237372]
Current detectors for AI-generated text (AIGT) lack robustness against adversarial perturbations.
This paper investigates the robustness of existing AIGT detection methods and introduces a novel detector, the Siamese Calibrated Reconstruction Network (SCRN)
The SCRN employs a reconstruction network to add and remove noise from text, extracting a semantic representation that is robust to local perturbations.
arXiv Detail & Related papers (2024-06-03T10:21:48Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
We propose a simple yet effective deepfake detector called LSDA.
It is based on a idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary.
We show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
arXiv Detail & Related papers (2023-11-19T09:41:10Z) - ConDA: Contrastive Domain Adaptation for AI-generated Text Detection [17.8787054992985]
Large language models (LLMs) are increasingly being used for generating text in news articles.
Given the potential malicious nature in which these LLMs can be used to generate disinformation at scale, it is important to build effective detectors for such AI-generated text.
In this work we tackle this data problem, in detecting AI-generated news text, and frame the problem as an unsupervised domain adaptation task.
arXiv Detail & Related papers (2023-09-07T19:51:30Z) - Optimizing Factual Accuracy in Text Generation through Dynamic Knowledge
Selection [71.20871905457174]
Language models (LMs) have revolutionized the way we interact with information, but they often generate nonfactual text.
Previous methods use external knowledge as references for text generation to enhance factuality but often struggle with the knowledge mix-up of irrelevant references.
We present DKGen, which divide the text generation process into an iterative process.
arXiv Detail & Related papers (2023-08-30T02:22:40Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
We present a paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering.
Using DIPPER to paraphrase text generated by three large language models (including GPT3.5-davinci-003) successfully evades several detectors, including watermarking.
We introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider.
arXiv Detail & Related papers (2023-03-23T16:29:27Z) - TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for
Unsupervised Sentence Embedding Learning [53.32740707197856]
We present a new state-of-the-art unsupervised method based on pre-trained Transformers and Sequential Denoising Auto-Encoder (TSDAE)
It can achieve up to 93.1% of the performance of in-domain supervised approaches.
arXiv Detail & Related papers (2021-04-14T17:02:18Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.