Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation
- URL: http://arxiv.org/abs/2410.08125v1
- Date: Thu, 10 Oct 2024 17:10:00 GMT
- Title: Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation
- Authors: Felix Petersen, Christian Borgelt, Aashwin Mishra, Stefano Ermon,
- Abstract summary: We deal with the problem of gradient estimation for differentiable relaxations of algorithms, operators, simulators, and other non-differentiable functions.
We develop variance reduction strategies for differentiable sorting and ranking, differentiable shortest-paths on graphs, differentiable rendering for pose estimation, as well as differentiable cryo-ET simulations.
- Score: 59.86921150579892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We deal with the problem of gradient estimation for stochastic differentiable relaxations of algorithms, operators, simulators, and other non-differentiable functions. Stochastic smoothing conventionally perturbs the input of a non-differentiable function with a differentiable density distribution with full support, smoothing it and enabling gradient estimation. Our theory starts at first principles to derive stochastic smoothing with reduced assumptions, without requiring a differentiable density nor full support, and we present a general framework for relaxation and gradient estimation of non-differentiable black-box functions $f:\mathbb{R}^n\to\mathbb{R}^m$. We develop variance reduction for gradient estimation from 3 orthogonal perspectives. Empirically, we benchmark 6 distributions and up to 24 variance reduction strategies for differentiable sorting and ranking, differentiable shortest-paths on graphs, differentiable rendering for pose estimation, as well as differentiable cryo-ET simulations.
Related papers
- Limit Theorems for Stochastic Gradient Descent with Infinite Variance [47.87144151929621]
We show that the gradient descent algorithm can be characterized as the stationary distribution of a suitably defined Ornstein-rnstein process driven by an appropriate L'evy process.
We also explore the applications of these results in linear regression and logistic regression models.
arXiv Detail & Related papers (2024-10-21T09:39:10Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - One-step corrected projected stochastic gradient descent for statistical estimation [49.1574468325115]
It is based on the projected gradient descent on the log-likelihood function corrected by a single step of the Fisher scoring algorithm.
We show theoretically and by simulations that it is an interesting alternative to the usual gradient descent with averaging or the adaptative gradient descent.
arXiv Detail & Related papers (2023-06-09T13:43:07Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Stochastic Langevin Differential Inclusions with Applications to Machine Learning [5.274477003588407]
We show some foundational results regarding the flow and properties of Langevin-type Differential Inclusions.
In particular, we show strong existence of the solution, as well as an canonical- minimization of the free-energy functional.
arXiv Detail & Related papers (2022-06-23T08:29:17Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
gradient estimation is of crucial importance in statistics and learning theory.
We consider here the classic regression setup, where a real valued square integrable r.v. $Y$ is to be predicted.
We prove nonasymptotic bounds improving upon those obtained for alternative estimation methods.
arXiv Detail & Related papers (2020-06-26T15:19:43Z) - Generalized Gumbel-Softmax Gradient Estimator for Various Discrete
Random Variables [16.643346012854156]
Esting the gradients of nodes is one of the crucial research questions in the deep generative modeling community.
This paper proposes a general version of the Gumbel-Softmax estimator with continuous relaxation.
arXiv Detail & Related papers (2020-03-04T01:13:15Z) - Scalable Gradients for Stochastic Differential Equations [40.70998833051251]
adjoint sensitivity method scalably computes gradients of ordinary differential equations.
We generalize this method to differential equations, allowing time-efficient and constant-memory computation.
We use our method to fit neural dynamics defined by networks, achieving competitive performance on a 50-dimensional motion capture dataset.
arXiv Detail & Related papers (2020-01-05T23:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.