RayEmb: Arbitrary Landmark Detection in X-Ray Images Using Ray Embedding Subspace
- URL: http://arxiv.org/abs/2410.08152v1
- Date: Thu, 10 Oct 2024 17:36:21 GMT
- Title: RayEmb: Arbitrary Landmark Detection in X-Ray Images Using Ray Embedding Subspace
- Authors: Pragyan Shrestha, Chun Xie, Yuichi Yoshii, Itaru Kitahara,
- Abstract summary: Intra-operative 2D-3D registration of X-ray images with pre-operatively acquired CT scans is a crucial procedure in orthopedic surgeries.
We propose a novel method to address this issue by detecting arbitrary landmark points in X-ray images.
- Score: 0.7937206070844555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intra-operative 2D-3D registration of X-ray images with pre-operatively acquired CT scans is a crucial procedure in orthopedic surgeries. Anatomical landmarks pre-annotated in the CT volume can be detected in X-ray images to establish 2D-3D correspondences, which are then utilized for registration. However, registration often fails in certain view angles due to poor landmark visibility. We propose a novel method to address this issue by detecting arbitrary landmark points in X-ray images. Our approach represents 3D points as distinct subspaces, formed by feature vectors (referred to as ray embeddings) corresponding to intersecting rays. Establishing 2D-3D correspondences then becomes a task of finding ray embeddings that are close to a given subspace, essentially performing an intersection test. Unlike conventional methods for landmark estimation, our approach eliminates the need for manually annotating fixed landmarks. We trained our model using the synthetic images generated from CTPelvic1K CLINIC dataset, which contains 103 CT volumes, and evaluated it on the DeepFluoro dataset, comprising real X-ray images. Experimental results demonstrate the superiority of our method over conventional methods. The code is available at https://github.com/Pragyanstha/rayemb.
Related papers
- Coarse-Fine View Attention Alignment-Based GAN for CT Reconstruction from Biplanar X-Rays [22.136553745483305]
We propose a novel attention-informed coarse-to-fine cross-view fusion method to combine the features extracted from the biplanar views.
Experiments have demonstrated the superiority of our proposed method over the SOTA methods.
arXiv Detail & Related papers (2024-08-19T06:57:07Z) - X-ray2CTPA: Generating 3D CTPA scans from 2D X-ray conditioning [24.233484690096898]
Chest X-rays or chest radiography (CXR) enables limited imaging compared to computed tomography (CT) scans.
CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs.
In this work we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolutionA scan.
arXiv Detail & Related papers (2024-06-23T13:53:35Z) - X-Ray: A Sequential 3D Representation For Generation [54.160173837582796]
We introduce X-Ray, a novel 3D sequential representation inspired by x-ray scans.
X-Ray transforms a 3D object into a series of surface frames at different layers, making it suitable for generating 3D models from images.
arXiv Detail & Related papers (2024-04-22T16:40:11Z) - Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans [10.72672892416061]
Over-dosed X-rays superimpose potential risks to human health to some extent.
Data-driven algorithms from volume scans to X-ray images are restricted by the scarcity of paired X-ray and volume data.
We propose CT2X-GAN to synthesize the X-ray images in an end-to-end manner using the content and style disentanglement from three different image domains.
arXiv Detail & Related papers (2024-04-18T04:25:56Z) - Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis [88.86777314004044]
We propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view visualization.
Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed.
arXiv Detail & Related papers (2024-03-07T00:12:08Z) - X-Ray to CT Rigid Registration Using Scene Coordinate Regression [1.1687067206676627]
This paper proposes a fully automatic registration method that is robust to extreme viewpoints.
It is based on a fully convolutional neural network (CNN) that regresses the overlapping coordinates for a given X-ray image.
The proposed method achieved an average mean target registration error (mTRE) of 3.79 mm in the 50th percentile of the simulated test dataset and projected mTRE of 9.65 mm in the 50th percentile of real fluoroscopic images for pelvis registration.
arXiv Detail & Related papers (2023-11-25T17:48:46Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Stereo X-ray Tomography [0.0]
X-ray tomography is a powerful technique, but detailed 3D imaging requires the acquisition of a large number of individual X-ray images.
Inspired by stereo vision, in this paper we develop X-ray imaging methods that work with two X-ray projection images.
arXiv Detail & Related papers (2023-02-26T02:20:18Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.