On the Evaluation of Generative Robotic Simulations
- URL: http://arxiv.org/abs/2410.08172v1
- Date: Thu, 10 Oct 2024 17:49:25 GMT
- Title: On the Evaluation of Generative Robotic Simulations
- Authors: Feng Chen, Botian Xu, Pu Hua, Peiqi Duan, Yanchao Yang, Yi Ma, Huazhe Xu,
- Abstract summary: We propose a comprehensive evaluation framework tailored to generative simulations.
For single-task quality, we evaluate the realism of the generated task and the completeness of the generated trajectories.
For task-level generalization, we assess the zero-shot generalization ability on unseen tasks of a policy trained with multiple generated tasks.
- Score: 35.8253733339539
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Due to the difficulty of acquiring extensive real-world data, robot simulation has become crucial for parallel training and sim-to-real transfer, highlighting the importance of scalable simulated robotic tasks. Foundation models have demonstrated impressive capacities in autonomously generating feasible robotic tasks. However, this new paradigm underscores the challenge of adequately evaluating these autonomously generated tasks. To address this, we propose a comprehensive evaluation framework tailored to generative simulations. Our framework segments evaluation into three core aspects: quality, diversity, and generalization. For single-task quality, we evaluate the realism of the generated task and the completeness of the generated trajectories using large language models and vision-language models. In terms of diversity, we measure both task and data diversity through text similarity of task descriptions and world model loss trained on collected task trajectories. For task-level generalization, we assess the zero-shot generalization ability on unseen tasks of a policy trained with multiple generated tasks. Experiments conducted on three representative task generation pipelines demonstrate that the results from our framework are highly consistent with human evaluations, confirming the feasibility and validity of our approach. The findings reveal that while metrics of quality and diversity can be achieved through certain methods, no single approach excels across all metrics, suggesting a need for greater focus on balancing these different metrics. Additionally, our analysis further highlights the common challenge of low generalization capability faced by current works. Our anonymous website: https://sites.google.com/view/evaltasks.
Related papers
- Towards Task Sampler Learning for Meta-Learning [37.02030832662183]
Meta-learning aims to learn general knowledge with diverse training tasks conducted from limited data, and then transfer it to new tasks.
It is commonly believed that increasing task diversity will enhance the generalization ability of meta-learning models.
This paper challenges this view through empirical and theoretical analysis.
arXiv Detail & Related papers (2023-07-18T01:53:18Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
We introduce SUPERB-SG, a new benchmark to evaluate pre-trained models across various speech tasks.
We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain.
We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.
arXiv Detail & Related papers (2022-03-14T04:26:40Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - BEHAVIOR: Benchmark for Everyday Household Activities in Virtual,
Interactive, and Ecological Environments [70.18430114842094]
We introduce BEHAVIOR, a benchmark for embodied AI with 100 activities in simulation.
These activities are designed to be realistic, diverse, and complex.
We include 500 human demonstrations in virtual reality (VR) to serve as the human ground truth.
arXiv Detail & Related papers (2021-08-06T23:36:23Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorld is a benchmark for causal structure and transfer learning in a robotic manipulation environment.
Tasks consist of constructing 3D shapes from a given set of blocks - inspired by how children learn to build complex structures.
arXiv Detail & Related papers (2020-10-08T23:01:13Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z) - Meta Adaptation using Importance Weighted Demonstrations [19.37671674146514]
In some cases, the distribution shifts, so much, that it is difficult for an agent to infer the new task.
We propose a novel algorithm to generalize on any related task by leveraging prior knowledge on a set of specific tasks.
We show experiments where the robot is trained from a diversity of environmental tasks and is also able to adapt to an unseen environment.
arXiv Detail & Related papers (2019-11-23T07:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.