Adapting Vision-Language Models for Evaluating World Models
- URL: http://arxiv.org/abs/2506.17967v1
- Date: Sun, 22 Jun 2025 09:53:28 GMT
- Title: Adapting Vision-Language Models for Evaluating World Models
- Authors: Mariya Hendriksen, Tabish Rashid, David Bignell, Raluca Georgescu, Abdelhak Lemkhenter, Katja Hofmann, Sam Devlin, Sarah Parisot,
- Abstract summary: We present UNIVERSE, a method for adapting Vision-language Evaluator for Rollouts in Simulated Environments under data and compute constraints.<n>We conduct a large-scale study comparing full, partial, and parameter-efficient finetuning across task formats, context lengths, sampling strategies, and data compositions.<n>The resulting unified evaluator matches the performance of task-specific baselines using a single checkpoint.
- Score: 24.813041196394582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: World models -- generative models that simulate environment dynamics conditioned on past observations and actions -- are gaining prominence in planning, simulation, and embodied AI. However, evaluating their rollouts remains a fundamental challenge, requiring fine-grained, temporally grounded assessment of action alignment and semantic consistency -- capabilities not captured by existing metrics. Vision-Language Models (VLMs) have shown promise as automatic evaluators of generative content due to their strong multimodal reasoning abilities. Yet, their use in fine-grained, temporally sensitive evaluation tasks remains limited and requires targeted adaptation. We introduce a evaluation protocol targeting two recognition tasks -- action recognition and character recognition -- each assessed across binary, multiple-choice, and open-ended formats. To support this, we present UNIVERSE (UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a method for adapting VLMs to rollout evaluation under data and compute constraints. We conduct a large-scale study comparing full, partial, and parameter-efficient finetuning across task formats, context lengths, sampling strategies, and data compositions. The resulting unified evaluator matches the performance of task-specific baselines using a single checkpoint. Human studies confirm strong alignment with human judgments, establishing UNIVERSE as a scalable, semantics-aware evaluator for world models.
Related papers
- Vision Language Action Models in Robotic Manipulation: A Systematic Review [1.1767330101986737]
Vision Language Action (VLA) models represent a transformative shift in robotics.<n>This review presents a comprehensive and forward-looking synthesis of the VLA paradigm.<n>We analyze 102 VLA models, 26 foundational datasets, and 12 simulation platforms.
arXiv Detail & Related papers (2025-07-14T18:00:34Z) - Monocle: Hybrid Local-Global In-Context Evaluation for Long-Text Generation with Uncertainty-Based Active Learning [63.531262595858]
Divide-and-conquer approach breaks comprehensive evaluation task into localized scoring tasks, followed by a final global assessment.<n>We introduce a hybrid in-context learning approach that leverages human annotations to enhance the performance of both local and global evaluations.<n>Finally, we develop an uncertainty-based active learning algorithm that efficiently selects data samples for human annotation.
arXiv Detail & Related papers (2025-05-26T16:39:41Z) - PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models [0.5499796332553708]
Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning.<n>A comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge.<n>We propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics.
arXiv Detail & Related papers (2025-03-24T09:06:45Z) - Adaptively profiling models with task elicitation [29.704450391533864]
Task elicitation finds hundreds of natural-language tasks where frontier models exhibit systematic failures.<n>We find that Sonnet 3.5 over-associates quantum computing and AGI and that o3-mini is prone to hallucination when fabrications are repeated in-context.
arXiv Detail & Related papers (2025-03-03T19:04:10Z) - WorldSimBench: Towards Video Generation Models as World Simulators [79.69709361730865]
We classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench.
WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks.
Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
arXiv Detail & Related papers (2024-10-23T17:56:11Z) - Investigating a Benchmark for Training-set free Evaluation of Linguistic Capabilities in Machine Reading Comprehension [12.09297288867446]
We examine a framework for evaluating optimised models in training-set free setting on synthetically generated challenge sets.
We find that despite the simplicity of the generation method, the data can compete with crowd-sourced datasets with regard to naturalness and lexical diversity.
We conduct further experiments and show that state-of-the-art language model-based MRC systems can learn to succeed on the challenge set correctly.
arXiv Detail & Related papers (2024-08-09T12:23:36Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy [27.454549324141087]
We propose a novel VQA benchmark based on well-known visual classification datasets.
We also suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category.
Our contributions aim to lay the foundation for more precise and meaningful assessments.
arXiv Detail & Related papers (2024-02-11T18:26:18Z) - Learning Evaluation Models from Large Language Models for Sequence Generation [61.8421748792555]
We propose a three-stage evaluation model training method that utilizes large language models to generate labeled data for model-based metric development.<n> Experimental results on the SummEval benchmark demonstrate that CSEM can effectively train an evaluation model without human-labeled data.
arXiv Detail & Related papers (2023-08-08T16:41:16Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
We propose a revised evaluation scheme for the VisDial dataset.
We measure consensus between answers generated by the model and a set of relevant answers.
We release these sets and code for the revised evaluation scheme as DenseVisDial.
arXiv Detail & Related papers (2020-04-20T13:26:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.