DifFRelight: Diffusion-Based Facial Performance Relighting
- URL: http://arxiv.org/abs/2410.08188v1
- Date: Thu, 10 Oct 2024 17:56:44 GMT
- Title: DifFRelight: Diffusion-Based Facial Performance Relighting
- Authors: Mingming He, Pascal Clausen, Ahmet Levent Taşel, Li Ma, Oliver Pilarski, Wenqi Xian, Laszlo Rikker, Xueming Yu, Ryan Burgert, Ning Yu, Paul Debevec,
- Abstract summary: We present a novel framework for free-viewpoint facial performance relighting using diffusion-based image-to-image translation.
We train a diffusion model for precise lighting control, enabling high-fidelity relit facial images from flat-lit inputs.
The model accurately reproduces complex lighting effects like eye reflections, subsurface scattering, self-shadowing, and translucency.
- Score: 12.909429637057343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel framework for free-viewpoint facial performance relighting using diffusion-based image-to-image translation. Leveraging a subject-specific dataset containing diverse facial expressions captured under various lighting conditions, including flat-lit and one-light-at-a-time (OLAT) scenarios, we train a diffusion model for precise lighting control, enabling high-fidelity relit facial images from flat-lit inputs. Our framework includes spatially-aligned conditioning of flat-lit captures and random noise, along with integrated lighting information for global control, utilizing prior knowledge from the pre-trained Stable Diffusion model. This model is then applied to dynamic facial performances captured in a consistent flat-lit environment and reconstructed for novel-view synthesis using a scalable dynamic 3D Gaussian Splatting method to maintain quality and consistency in the relit results. In addition, we introduce unified lighting control by integrating a novel area lighting representation with directional lighting, allowing for joint adjustments in light size and direction. We also enable high dynamic range imaging (HDRI) composition using multiple directional lights to produce dynamic sequences under complex lighting conditions. Our evaluations demonstrate the models efficiency in achieving precise lighting control and generalizing across various facial expressions while preserving detailed features such as skintexture andhair. The model accurately reproduces complex lighting effects like eye reflections, subsurface scattering, self-shadowing, and translucency, advancing photorealism within our framework.
Related papers
- Retinex-Diffusion: On Controlling Illumination Conditions in Diffusion Models via Retinex Theory [19.205929427075965]
We conceptualize the diffusion model as a black-box image render and strategically decompose its energy function in alignment with the image formation model.
It generates images with realistic illumination effects, including cast shadow, soft shadow, and inter-reflections.
arXiv Detail & Related papers (2024-07-29T03:15:07Z) - URHand: Universal Relightable Hands [64.25893653236912]
We present URHand, the first universal relightable hand model that generalizes across viewpoints, poses, illuminations, and identities.
Our model allows few-shot personalization using images captured with a mobile phone, and is ready to be photorealistically rendered under novel illuminations.
arXiv Detail & Related papers (2024-01-10T18:59:51Z) - Relightful Harmonization: Lighting-aware Portrait Background Replacement [23.19641174787912]
We introduce Relightful Harmonization, a lighting-aware diffusion model designed to seamlessly harmonize sophisticated lighting effect for the foreground portrait using any background image.
Our approach unfolds in three stages. First, we introduce a lighting representation module that allows our diffusion model to encode lighting information from target image background.
Second, we introduce an alignment network that aligns lighting features learned from image background with lighting features learned from panorama environment maps.
arXiv Detail & Related papers (2023-12-11T23:20:31Z) - EverLight: Indoor-Outdoor Editable HDR Lighting Estimation [9.443561684223514]
We propose a method which combines a parametric light model with 360deg panoramas, ready to use as HDRI in rendering engines.
In our representation, users can easily edit light direction, intensity, number, etc. to impact shading while providing rich, complex reflections while seamlessly blending with the edits.
arXiv Detail & Related papers (2023-04-26T00:20:59Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Neural Light Field Estimation for Street Scenes with Differentiable
Virtual Object Insertion [129.52943959497665]
Existing works on outdoor lighting estimation typically simplify the scene lighting into an environment map.
We propose a neural approach that estimates the 5D HDR light field from a single image.
We show the benefits of our AR object insertion in an autonomous driving application.
arXiv Detail & Related papers (2022-08-19T17:59:16Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Sparse Needlets for Lighting Estimation with Spherical Transport Loss [89.52531416604774]
NeedleLight is a new lighting estimation model that represents illumination with needlets and allows lighting estimation in both frequency domain and spatial domain jointly.
Extensive experiments show that NeedleLight achieves superior lighting estimation consistently across multiple evaluation metrics as compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-06-24T15:19:42Z) - Neural Video Portrait Relighting in Real-time via Consistency Modeling [41.04622998356025]
We propose a neural approach for real-time, high-quality and coherent video portrait relighting.
We propose a hybrid structure and lighting disentanglement in an encoder-decoder architecture.
We also propose a lighting sampling strategy to model the illumination consistency and mutation for natural portrait light manipulation in real-world.
arXiv Detail & Related papers (2021-04-01T14:13:28Z) - Light Stage Super-Resolution: Continuous High-Frequency Relighting [58.09243542908402]
We propose a learning-based solution for the "super-resolution" of scans of human faces taken from a light stage.
Our method aggregates the captured images corresponding to neighboring lights in the stage, and uses a neural network to synthesize a rendering of the face.
Our learned model is able to produce renderings for arbitrary light directions that exhibit realistic shadows and specular highlights.
arXiv Detail & Related papers (2020-10-17T23:40:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.