論文の概要: Towards Optimal Environmental Policies: Policy Learning under Arbitrary Bipartite Network Interference
- arxiv url: http://arxiv.org/abs/2410.08362v2
- Date: Sat, 19 Oct 2024 19:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:46:24.219714
- Title: Towards Optimal Environmental Policies: Policy Learning under Arbitrary Bipartite Network Interference
- Title(参考訳): 最適環境政策に向けて : 任意二部ネットワーク干渉による政策学習
- Authors: Raphael C. Kim, Falco J. Bargagli-Stoffi, Kevin L. Chen, Rachel C. Nethery,
- Abstract要約: 石炭火力発電所への排出削減介入は、汚染に関連する健康負荷を減らすための効果があるがコストがかかる戦略であることが証明されている。
任意のネットワーク干渉(BNI)の下で最適ポリシーを決定するための新しい学習手法を提案する。
年間IHD入院率は1万人あたり20.66-44.51から、異なるコスト制約下での最適政策により減少する可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The substantial effect of air pollution on cardiovascular disease and mortality burdens is well-established. Emissions-reducing interventions on coal-fired power plants -- a major source of hazardous air pollution -- have proven to be an effective, but costly, strategy for reducing pollution-related health burdens. Targeting the power plants that achieve maximum health benefits while satisfying realistic cost constraints is challenging. The primary difficulty lies in quantifying the health benefits of intervening at particular plants. This is further complicated because interventions are applied on power plants, while health impacts occur in potentially distant communities, a setting known as bipartite network interference (BNI). In this paper, we introduce novel policy learning methods based on Q- and A-Learning to determine the optimal policy under arbitrary BNI. We derive asymptotic properties and demonstrate finite sample efficacy in simulations. We apply our novel methods to a comprehensive dataset of Medicare claims, power plant data, and pollution transport networks. Our goal is to determine the optimal strategy for installing power plant scrubbers to minimize ischemic heart disease (IHD) hospitalizations under various cost constraints. We find that annual IHD hospitalization rates could be reduced in a range from 20.66-44.51 per 10,000 person-years through optimal policies under different cost constraints.
- Abstract(参考訳): 大気汚染が心臓血管疾患や死亡の重荷に与える影響は十分に確立されている。
大気汚染の主な原因である石炭火力発電所への排出削減介入は、汚染に関連する健康負担を減らすための効果があるが、コストがかかる戦略であることが証明されている。
現実的なコスト制約を満たしつつ、最大の健康上の利益を達成する発電所をターゲットにすることは困難である。
主な困難は、特定の植物に介入する健康上の利益を定量化することである。
これは、発電所への介入が適用されるのに対して、潜在的に離れた地域社会では健康への影響が生じるため、さらに複雑である。
本稿では,Q-とA-ラーニングに基づく新しい政策学習手法を導入し,任意のBNIの下での最適政策を決定する。
我々は漸近特性を導出し、シミュレーションにおいて有限サンプルの有効性を示す。
我々は,医療クレーム,発電所データ,公害輸送ネットワークの包括的データセットに新しい手法を適用した。
本研究の目的は, 虚血性心疾患 (IHD) の入院を最小限に抑えるため, 発電所スクラブを設置するための最適戦略を決定することである。
年間IHD入院率は1万人あたり20.66-44.51から、異なるコスト制約下での最適政策により減少する可能性がある。
関連論文リスト
- Deep Reinforcement Learning for Efficient and Fair Allocation of Health Care Resources [47.57108369791273]
医療資源の枯渇は、レーションの避けられない結果をもたらす可能性がある。
医療資源割り当てプロトコルの普遍的な標準は存在しない。
本稿では,患者の疾患進行と患者間の相互作用効果を統合するためのトランスフォーマーベースのディープQネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-15T17:28:06Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
マルチアーム・バンディット・フレームワークを用いてワクチンのアロケーション戦略を評価する新しい手法を提案する。
$m$-top Exploringにより、アルゴリズムは最高のユーティリティを期待する$m$ポリシーを学ぶことができる。
ベルギーのCOVID-19流行を個人モデルSTRIDEを用いて検討し、予防接種方針のセットを学習する。
論文 参考訳(メタデータ) (2023-01-30T12:22:30Z) - Estimating Geographic Spillover Effects of COVID-19 Policies From
Large-Scale Mobility Networks [54.90772000796717]
郡レベルの政策は地域間の柔軟性を提供するが、地理的な流出がある場合には効果が低下する可能性がある。
我々は、数十億のタイムスタンプを持つ移動ネットワークを用いて、流出量を推定する。
郡レベルの制限は、モビリティを減らすための州全体の制限と同等に有効である。
論文 参考訳(メタデータ) (2022-12-12T20:16:54Z) - Discrete Stochastic Optimization for Public Health Interventions with
Constraints [1.8275108630751844]
本稿では,2009年のH1N1と新型コロナウイルスのパンデミックについて,オープンソースのモンテカルロシミュレーションによってモデル化された疾患の拡散について述べる。
最適化の目的は、社会に最小限の経済損失をもたらすため、介入戦略の最良の組み合わせを決定することである。
論文 参考訳(メタデータ) (2022-06-27T21:21:25Z) - An Efficient Approach for Optimizing the Cost-effective Individualized
Treatment Rule Using Conditional Random Forest [5.406112598028401]
我々は、NMB(net-monetary-benefit)という概念を用いて、健康上の利益と関連するコストのトレードオフを評価する。
NMBに基づく分類アルゴリズムを用いて最適なCE-ITRを同定する。
我々は、NIHが出資したSystolic Blood Pressure Intervention Trialにトップパフォーマンスのアルゴリズムを適用した。
論文 参考訳(メタデータ) (2022-04-23T01:36:24Z) - Reinforcement Learning for Optimization of COVID-19 Mitigation policies [29.4529156655747]
2020年は新型コロナウイルスの感染拡大が世界最悪の世界的なパンデミックの1つとなった。
世界中の政府は公衆衛生を保護し、経済を最大限に維持するという課題に直面している。
疫学モデルは、これらの病気の拡散に関する洞察を与え、介入政策の効果を予測する。
論文 参考訳(メタデータ) (2020-10-20T18:40:15Z) - Optimal control towards sustainable wastewater treatment plants based on
multi-agent reinforcement learning [1.0765359420035392]
本研究は,WWTPにおける溶存酸素量と化学物質量を最適化するために,多エージェント深部強化学習という新しい手法を用いた。
その結果,LCAに基づく最適化は,ベースラインのシナリオに比べて環境への影響が低いことがわかった。
コスト指向制御戦略はLCA駆動戦略に匹敵する全体的な性能を示す。
論文 参考訳(メタデータ) (2020-08-19T05:34:47Z) - A Deep Q-learning/genetic Algorithms Based Novel Methodology For
Optimizing Covid-19 Pandemic Government Actions [63.669642197519934]
我々はSEIR疫学モデルを用いて、人口の時間とともにウイルスウイルスの進化を表現している。
報酬システムにより、アクションのシーケンス(統合、自己同化、二メートル距離、制限を取らない)を評価する。
どちらの意味でも、パンデミックの悪影響を抑えるために政府が取るべき行動を発見する上で、我々の方法論が有効な手段であることを実証する。
論文 参考訳(メタデータ) (2020-05-15T17:17:45Z) - Hierarchical Adaptive Contextual Bandits for Resource Constraint based
Recommendation [49.69139684065241]
コンテキスト多重武装バンディット(MAB)は、様々な問題において最先端のパフォーマンスを達成する。
本稿では,階層型適応型文脈帯域幅法(HATCH)を提案する。
論文 参考訳(メタデータ) (2020-04-02T17:04:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。