論文の概要: Assessing Privacy Policies with AI: Ethical, Legal, and Technical Challenges
- arxiv url: http://arxiv.org/abs/2410.08381v1
- Date: Thu, 10 Oct 2024 21:36:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:36:35.352757
- Title: Assessing Privacy Policies with AI: Ethical, Legal, and Technical Challenges
- Title(参考訳): AIによるプライバシポリシの評価 - 倫理的,法的,技術的課題
- Authors: Irem Aydin, Hermann Diebel-Fischer, Vincent Freiberger, Julia Möller-Klapperich, Erik Buchmann, Michael Färber, Anne Lauber-Rönsberg, Birte Platow,
- Abstract要約: 大きな言語モデル(LLM)は、ユーザのプライバシポリシを自動評価するために使用することができる。
このアプローチの課題を,技術的実現性,倫理的意味,法的適合性の3つの柱で検討する。
本研究は,今後の研究の可能性を特定し,LLM技術の利用に関する議論を促進することを目的としている。
- 参考スコア(独自算出の注目度): 6.916147439085307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing use of Machine Learning and Artificial Intelligence (AI), particularly Large Language Models (LLMs) like OpenAI's GPT series, leads to disruptive changes across organizations. At the same time, there is a growing concern about how organizations handle personal data. Thus, privacy policies are essential for transparency in data processing practices, enabling users to assess privacy risks. However, these policies are often long and complex. This might lead to user confusion and consent fatigue, where users accept data practices against their interests, and abusive or unfair practices might go unnoticed. LLMss can be used to assess privacy policies for users automatically. In this interdisciplinary work, we explore the challenges of this approach in three pillars, namely technical feasibility, ethical implications, and legal compatibility of using LLMs to assess privacy policies. Our findings aim to identify potential for future research, and to foster a discussion on the use of LLM technologies for enabling users to fulfil their important role as decision-makers in a constantly developing AI-driven digital economy.
- Abstract(参考訳): OpenAIのGPTシリーズのような機械学習と人工知能(AI)の利用の増加、特にLarge Language Models(LLM)は、組織全体に破壊的な変化をもたらします。
同時に、組織が個人データをどう扱うかという懸念も高まっている。
したがって、プライバシーポリシーはデータ処理のプラクティスにおける透明性に不可欠であり、ユーザーはプライバシーリスクを評価することができる。
しかし、これらの政策はしばしば長く複雑である。
これはユーザーの混乱と同意の疲労につながる可能性があり、ユーザーは自分の利益に対してデータプラクティスを受け入れ、虐待的または不公平なプラクティスは気づかないかもしれない。
LLMは、ユーザのプライバシポリシを自動評価するために使用することができる。
本研究は,3つの柱,すなわち技術実現可能性,倫理的意味,およびプライバシーポリシーの評価にLLMを使用することの法的適合性について考察する。
本研究の目的は,AI駆動型デジタル経済における意思決定者としての重要な役割を,ユーザが果たす上でのLLM技術の利用に関する議論を促進することにある。
関連論文リスト
- AI Delegates with a Dual Focus: Ensuring Privacy and Strategic Self-Disclosure [42.96087647326612]
我々は、さまざまな社会的関係やタスクシナリオにまたがるAIデリゲートのユーザの嗜好を調査するために、パイロットスタディを実施している。
次に、プライバシーに配慮した自己開示を可能にする新しいAIデリゲートシステムを提案する。
我々のユーザー調査は、提案されたAIデリゲートがプライバシーを戦略的に保護し、多様なダイナミックなソーシャルインタラクションにおけるその利用の先駆者であることを実証している。
論文 参考訳(メタデータ) (2024-09-26T08:45:15Z) - How Privacy-Savvy Are Large Language Models? A Case Study on Compliance and Privacy Technical Review [15.15468770348023]
プライバシ情報抽出(PIE)、法および規制キーポイント検出(KPD)、質問応答(QA)などのプライバシー関連タスクにおいて、大規模言語モデルの性能を評価する。
本稿では, BERT, GPT-3.5, GPT-4, カスタムモデルなど, プライバシコンプライアンスチェックや技術プライバシレビューの実行能力について検討する。
LLMは、プライバシーレビューの自動化と規制上の相違点の特定を約束する一方で、法律標準の進化に完全に準拠する能力において、大きなギャップが持続している。
論文 参考訳(メタデータ) (2024-09-04T01:51:37Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
大規模言語モデル(LLM)は、人工知能の大幅な進歩を表し、様々な領域にまたがる応用を見つける。
トレーニングのための大規模なインターネットソースデータセットへの依存は、注目すべきプライバシー問題を引き起こす。
特定のアプリケーション固有のシナリオでは、これらのモデルをプライベートデータで微調整する必要があります。
論文 参考訳(メタデータ) (2024-08-10T05:41:19Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Human-Centered Privacy Research in the Age of Large Language Models [31.379232599019915]
このSIGは、使用可能なセキュリティとプライバシ、人間とAIのコラボレーション、NLP、その他の関連するドメインの背景を持つ研究者を集めて、この問題に対する見解と経験を共有することを目的としている。
論文 参考訳(メタデータ) (2024-02-03T02:32:45Z) - Experts-in-the-Loop: Establishing an Effective Workflow in Crafting
Privacy Q&A [0.0]
プライバシポリシをプライバシ質問応答(Q&A)ペアに変換する動的ワークフローを提案する。
そこで我々は,法の専門家と会話デザイナーの学際的なコラボレーションを促進する。
提案するワークフローは,プライバシQ&Aの構築を通じて継続的改善と監視の基盤となる。
論文 参考訳(メタデータ) (2023-11-18T20:32:59Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
データ保護法とプライバシーの権利が認められているにもかかわらず、個人情報の取引は「トレーディング・オイル」と同等のビジネスになっている。
オープンな対立は、データに対するビジネスの要求とプライバシーへの欲求の間に生じている。
プライバシを備えたパーソナル情報市場のビジョンを提案し,テストする。
論文 参考訳(メタデータ) (2020-05-13T13:55:50Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
本稿では,フェデレート機械学習を交通分野に適用する方法について述べる。
フェデレートラーニングは、ユーザのプライバシを尊重しつつ、プライバシに敏感なデータを処理可能にする方法だと考えています。
論文 参考訳(メタデータ) (2020-04-01T15:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。