論文の概要: Collection, usage and privacy of mobility data in the enterprise and public administrations
- arxiv url: http://arxiv.org/abs/2407.03732v1
- Date: Thu, 4 Jul 2024 08:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:52:18.228006
- Title: Collection, usage and privacy of mobility data in the enterprise and public administrations
- Title(参考訳): 企業・行政におけるモビリティデータの収集・利用・プライバシ
- Authors: Alexandra Kapp,
- Abstract要約: 個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human mobility data is a crucial resource for urban mobility management, but it does not come without personal reference. The implementation of security measures such as anonymization is thus needed to protect individuals' privacy. Often, a trade-off arises as such techniques potentially decrease the utility of the data and limit its use. While much research on anonymization techniques exists, there is little information on the actual implementations by practitioners, especially outside the big tech context. Within our study, we conducted expert interviews to gain insights into practices in the field. We categorize purposes, data sources, analysis, and modeling tasks to provide a profound understanding of the context such data is used in. We survey privacy-enhancing methods in use, which generally do not comply with state-of-the-art standards of differential privacy. We provide groundwork for further research on practice-oriented research by identifying privacy needs of practitioners and extracting relevant mobility characteristics for future standardized evaluations of privacy-enhancing methods.
- Abstract(参考訳): 人間移動データは都市移動管理にとって重要な資源であるが、個人的参照なしでは得られない。
したがって、個人のプライバシーを保護するためには、匿名化などのセキュリティ対策の実施が必要である。
このような技術がデータの有用性を減らし、使用を制限する可能性があるため、しばしばトレードオフが発生する。
匿名化技術に関する多くの研究は存在するが、実践者による実際の実装についてはほとんど情報がない。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
目的、データソース、分析、モデリングタスクを分類し、そのようなデータが使われる状況について深い理解を提供する。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
本稿では,実践者のプライバシニーズを特定し,今後のプライバシ向上手法の標準化評価のために,関連するモビリティ特性を抽出することによって,実践指向研究のさらなる研究の基盤を提供する。
関連論文リスト
- A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - A Cautionary Tale: On the Role of Reference Data in Empirical Privacy
Defenses [12.34501903200183]
本稿では,トレーニングデータと参照データの両方に関して,ユーティリティプライバシトレードオフを容易に理解可能なベースラインディフェンスを提案する。
私たちの実験では、驚くべきことに、最もよく研究され、現在最先端の実証的なプライバシー保護よりも優れています。
論文 参考訳(メタデータ) (2023-10-18T17:07:07Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - UN Handbook on Privacy-Preserving Computation Techniques [14.63213847614646]
本稿では,機密データの統計的解析におけるプライバシー保護手法について述べる。
この文書の情報は、統計学者、データサイエンティスト、データキュレーター、アーキテクト、ITスペシャリスト、およびセキュリティおよび情報保証スペシャリストによって使用されることを意図している。
論文 参考訳(メタデータ) (2023-01-15T19:43:40Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Evaluating Privacy-Preserving Machine Learning in Critical
Infrastructures: A Case Study on Time-Series Classification [5.607917328636864]
モデルもデータも、センシティブな情報を抽出するのに使用しないことを確実にすることは、重要なことです。
さまざまな安全クリティカルなユースケース(主に時系列データに依存している)は、現在、プライバシーに関する考慮事項で不足している。
時系列データに適用性に関するいくつかのプライバシー保護手法を評価することにより、深層学習における暗号化の非効率性を検証した。
論文 参考訳(メタデータ) (2021-11-29T12:28:22Z) - Utility-aware Privacy-preserving Data Releasing [7.462336024223669]
本稿では2段階の摂動に基づくプライバシー保護データ公開フレームワークを提案する。
まず、特定の事前定義されたプライバシとユーティリティの問題がパブリックドメインデータから学習される。
そして、学習した知識を活用して、データ所有者のデータを民営化したデータに正確に摂動させます。
論文 参考訳(メタデータ) (2020-05-09T05:32:46Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
本稿では,フェデレート機械学習を交通分野に適用する方法について述べる。
フェデレートラーニングは、ユーザのプライバシを尊重しつつ、プライバシに敏感なデータを処理可能にする方法だと考えています。
論文 参考訳(メタデータ) (2020-04-01T15:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。