Identifying Money Laundering Subgraphs on the Blockchain
- URL: http://arxiv.org/abs/2410.08394v1
- Date: Thu, 10 Oct 2024 22:01:14 GMT
- Title: Identifying Money Laundering Subgraphs on the Blockchain
- Authors: Kiwhan Song, Mohamed Ali Dhraief, Muhua Xu, Locke Cai, Xuhao Chen, Arvind, Jie Chen,
- Abstract summary: Anti-Money Laundering involves the identification of money laundering crimes in financial activities.
Recent studies advanced AML through the lens of graph-based machine learning.
RevTrack is a graph-based framework that enables large-scale AML analysis with a lower cost and a higher accuracy.
- Score: 5.377744640870357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anti-Money Laundering (AML) involves the identification of money laundering crimes in financial activities, such as cryptocurrency transactions. Recent studies advanced AML through the lens of graph-based machine learning, modeling the web of financial transactions as a graph and developing graph methods to identify suspicious activities. For instance, a recent effort on opensourcing datasets and benchmarks, Elliptic2, treats a set of Bitcoin addresses, considered to be controlled by the same entity, as a graph node and transactions among entities as graph edges. This modeling reveals the "shape" of a money laundering scheme - a subgraph on the blockchain. Despite the attractive subgraph classification results benchmarked by the paper, competitive methods remain expensive to apply due to the massive size of the graph; moreover, existing methods require candidate subgraphs as inputs which may not be available in practice. In this work, we introduce RevTrack, a graph-based framework that enables large-scale AML analysis with a lower cost and a higher accuracy. The key idea is to track the initial senders and the final receivers of funds; these entities offer a strong indication of the nature (licit vs. suspicious) of their respective subgraph. Based on this framework, we propose RevClassify, which is a neural network model for subgraph classification. Additionally, we address the practical problem where subgraph candidates are not given, by proposing RevFilter. This method identifies new suspicious subgraphs by iteratively filtering licit transactions, using RevClassify. Benchmarking these methods on Elliptic2, a new standard for AML, we show that RevClassify outperforms state-of-the-art subgraph classification techniques in both cost and accuracy. Furthermore, we demonstrate the effectiveness of RevFilter in discovering new suspicious subgraphs, confirming its utility for practical AML.
Related papers
- Masked Image Modeling: A Survey [73.21154550957898]
Masked image modeling emerged as a powerful self-supervised learning technique in computer vision.
We construct a taxonomy and review the most prominent papers in recent years.
We aggregate the performance results of various masked image modeling methods on the most popular datasets.
arXiv Detail & Related papers (2024-08-13T07:27:02Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - The Shape of Money Laundering: Subgraph Representation Learning on the Blockchain with the Elliptic2 Dataset [6.209290101460395]
Subgraph representation learning is a technique for analyzing local structures (or shapes) within complex networks.
We introduce Elliptic2, a large graph dataset containing 122K labeled subgraphs of Bitcoin clusters.
We find immediate practical value in this approach and the potential for a new standard in anti-money laundering and forensic analytics in cryptocurrencies.
arXiv Detail & Related papers (2024-04-29T21:19:41Z) - Graph Feature Preprocessor: Real-time Subgraph-based Feature Extraction for Financial Crime Detection [2.1140460101878107]
"Graph Feature Preprocessor" is a software library for detecting typical money laundering patterns in financial transaction graphs in real time.
We show that our enriched transaction features dramatically improve the prediction accuracy of gradient-boosting-based machine learning models.
Our solution can detect illicit transactions with higher minority-class F1 scores than standard graph neural networks in anti-money laundering and phishing datasets.
arXiv Detail & Related papers (2024-02-13T16:53:48Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Catch Me If You Can: Semi-supervised Graph Learning for Spotting Money
Laundering [0.4159343412286401]
Money laundering is a process where criminals use financial services to move illegal money to untraceable destinations.
It is very crucial to identify such activities accurately and reliably in order to enforce an anti-money laundering (AML)
In this paper, we employ semi-supervised graph learning techniques on graphs of financial transactions in order to identify nodes involved in potential money laundering.
arXiv Detail & Related papers (2023-02-23T09:34:19Z) - LaundroGraph: Self-Supervised Graph Representation Learning for
Anti-Money Laundering [5.478764356647437]
LaundroGraph is a novel self-supervised graph representation learning approach.
It provides insights to assist the anti-money laundering reviewing process.
To the best of our knowledge, this is the first fully self-supervised system within the context of AML detection.
arXiv Detail & Related papers (2022-10-25T21:58:02Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer
Proxies [65.92826041406802]
We propose a Proxy-based deep Graph Metric Learning approach from the perspective of graph classification.
Multiple global proxies are leveraged to collectively approximate the original data points for each class.
We design a novel reverse label propagation algorithm, by which the neighbor relationships are adjusted according to ground-truth labels.
arXiv Detail & Related papers (2020-10-26T14:52:42Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.