論文の概要: VoxelPrompt: A Vision-Language Agent for Grounded Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2410.08397v1
- Date: Thu, 10 Oct 2024 22:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:36:35.267569
- Title: VoxelPrompt: A Vision-Language Agent for Grounded Medical Image Analysis
- Title(参考訳): VoxelPrompt: 接地医療画像解析のためのビジョンランゲージエージェント
- Authors: Andrew Hoopes, Victor Ion Butoi, John V. Guttag, Adrian V. Dalca,
- Abstract要約: VoxelPromptは、自然言語、画像ボリューム、分析メトリクスの合同モデリングを通じて、様々な放射線学的な課題に取り組む。
我々は,VoxelPromptが数百の解剖学的,病理学的特徴を記述し,多くの複雑な形態的特性を計測し,病変の特徴をオープン言語で解析できることを示した。
- 参考スコア(独自算出の注目度): 9.937830036053871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present VoxelPrompt, an agent-driven vision-language framework that tackles diverse radiological tasks through joint modeling of natural language, image volumes, and analytical metrics. VoxelPrompt is multi-modal and versatile, leveraging the flexibility of language interaction while providing quantitatively grounded image analysis. Given a variable number of 3D medical volumes, such as MRI and CT scans, VoxelPrompt employs a language agent that iteratively predicts executable instructions to solve a task specified by an input prompt. These instructions communicate with a vision network to encode image features and generate volumetric outputs (e.g., segmentations). VoxelPrompt interprets the results of intermediate instructions and plans further actions to compute discrete measures (e.g., tumor growth across a series of scans) and present relevant outputs to the user. We evaluate this framework in a sandbox of diverse neuroimaging tasks, and we show that the single VoxelPrompt model can delineate hundreds of anatomical and pathological features, measure many complex morphological properties, and perform open-language analysis of lesion characteristics. VoxelPrompt carries out these objectives with accuracy similar to that of fine-tuned, single-task models for segmentation and visual question-answering, while facilitating a much larger range of tasks. Therefore, by supporting accurate image processing with language interaction, VoxelPrompt provides comprehensive utility for numerous imaging tasks that traditionally require specialized models to address.
- Abstract(参考訳): 本稿では,VoxelPromptというエージェント駆動の視覚言語フレームワークについて紹介する。
VoxelPromptは多モードで汎用的であり、定量的に基底画像解析を提供しながら、言語間相互作用の柔軟性を活用する。
MRIやCTスキャンなどの様々な3D医療ボリュームが与えられた場合、VoxelPromptは入力プロンプトによって指定されたタスクを解決するために実行可能な命令を反復的に予測する言語エージェントを使用する。
これらの命令は視覚ネットワークと通信し、画像の特徴を符号化し、ボリューム出力を生成する(例:セグメンテーション)。
VoxelPromptは、中間命令の結果を解釈し、離散的な測定(例えば、一連のスキャンにわたる腫瘍の成長)を計算し、関連する出力をユーザに提示するためのさらなるアクションを計画する。
我々は,この枠組みを多様なニューロイメージングタスクのサンドボックスで評価し,単一のVoxelPromptモデルが数百の解剖学的および病理学的特徴を記述し,多くの複雑な形態的特性を計測し,病変特性のオープン言語解析を行うことを示す。
VoxelPromptは、セグメンテーションと視覚的質問応答のための細調整された単一タスクモデルと同様の精度でこれらの目的を達成し、より広い範囲のタスクを容易にする。
したがって、VoxelPromptは言語相互作用による正確な画像処理をサポートすることで、伝統的に対処するために特別なモデルを必要とする多数の画像処理タスクに対して包括的なユーティリティを提供する。
関連論文リスト
- Towards a Multimodal Large Language Model with Pixel-Level Insight for Biomedicine [9.881981672848598]
MedPLIBという名前のバイオメディカルドメインのための新しいエンド・ツー・エンド・マルチモーダル・大規模言語モデルを導入する。
視覚的質問応答(VQA)、任意のピクセルレベルのプロンプト(ポイント、バウンディングボックス、自由形式の形状)、ピクセルレベルの接地をサポートする。
その結果,MedPLIBは複数の医学的視覚言語タスクにおいて最先端の結果を得たことが示唆された。
論文 参考訳(メタデータ) (2024-12-12T13:41:35Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - MedXChat: A Unified Multimodal Large Language Model Framework towards CXRs Understanding and Generation [28.497591315598402]
MLLM(Multimodal Large Language Models)は、様々な画像処理タスクで成功している。
胸部X線(CXR)の理解・生成におけるMLLMsの可能性について検討した。
論文 参考訳(メタデータ) (2023-12-04T06:40:12Z) - InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists [66.85125112199898]
我々は,タスク固有の設計選択を抽象化する,コンピュータビジョンタスクのための統一言語インタフェースを開発する。
InstructCVと呼ばれる我々のモデルは、他のジェネラリストやタスク固有の視覚モデルと比較して競合的に機能する。
論文 参考訳(メタデータ) (2023-09-30T14:26:43Z) - Exploring Transfer Learning in Medical Image Segmentation using Vision-Language Models [0.8878802873945023]
本研究では,視覚言語モデルから2次元医用画像への移行に関する最初の体系的研究を紹介する。
VLSMは画像のみのセグメンテーションモデルと比較して競合性能を示すが、全てのVLSMは言語プロンプトから追加情報を利用するわけではない。
論文 参考訳(メタデータ) (2023-08-15T11:28:21Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - PaLI-X: On Scaling up a Multilingual Vision and Language Model [166.9837904115951]
マルチ言語ビジョンと言語モデルであるPaLI-Xをスケールアップする際のトレーニングレシピと結果を示す。
我々のモデルは、多種多様な複雑なタスクにおいて、新しいレベルのパフォーマンスを達成する。
複雑なカウントや多言語オブジェクト検出といった,トレーニングミックスに明示的に含まれないタスクの出現を観察する。
論文 参考訳(メタデータ) (2023-05-29T18:58:38Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
マルチモーダルマスク付きオートエンコーダを用いた自己教師型学習パラダイムを提案する。
我々は、ランダムにマスキングされた画像やテキストから欠落したピクセルやトークンを再構成することで、クロスモーダルなドメイン知識を学習する。
論文 参考訳(メタデータ) (2022-09-15T07:26:43Z) - Multi-modal Understanding and Generation for Medical Images and Text via
Vision-Language Pre-Training [5.119201893752376]
本稿では,トランスフォーマーアーキテクチャと新しいマルチモーダルアテンションマスキング手法を組み合わせた医療ビジョン言語学習システム(MedViLL)を提案する。
我々は,タスク固有のアーキテクチャを含む様々なベースラインに対して,MedViLLのより優れたダウンストリームタスク性能を実証的に示す。
論文 参考訳(メタデータ) (2021-05-24T15:14:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。