論文の概要: Investigating Developers' Preferences for Learning and Issue Resolution Resources in the ChatGPT Era
- arxiv url: http://arxiv.org/abs/2410.08411v1
- Date: Thu, 10 Oct 2024 22:57:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:26:42.391078
- Title: Investigating Developers' Preferences for Learning and Issue Resolution Resources in the ChatGPT Era
- Title(参考訳): ChatGPT時代の学習と課題解決のための開発者の選好を探る
- Authors: Ahmad Tayeb, Mohammad D. Alahmadi, Elham Tajik, Sonia Haiduc,
- Abstract要約: 最近のトレンドはビデオチュートリアルのような魅力的なフォーマットを好んでいる。
ChatGPTのような大規模言語モデル(LLM)の出現は、新しい学習パラダイムを提示します。
我々は,ソフトウェア開発者とコンピュータサイエンスの学生を対象に,341の回答を集め,そのうち268の回答を完成・分析した。
- 参考スコア(独自算出の注目度): 1.3124513975412255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The landscape of software developer learning resources has continuously evolved, with recent trends favoring engaging formats like video tutorials. The emergence of Large Language Models (LLMs) like ChatGPT presents a new learning paradigm. While existing research explores the potential of LLMs in software development and education, their impact on developers' learning and solution-seeking behavior remains unexplored. To address this gap, we conducted a survey targeting software developers and computer science students, gathering 341 responses, of which 268 were completed and analyzed. This study investigates how AI chatbots like ChatGPT have influenced developers' learning preferences when acquiring new skills, exploring technologies, and resolving programming issues. Through quantitative and qualitative analysis, we explore whether AI tools supplement or replace traditional learning resources such as video tutorials, written tutorials, and Q&A forums. Our findings reveal a nuanced view: while video tutorials continue to be highly preferred for their comprehensive coverage, a significant number of respondents view AI chatbots as potential replacements for written tutorials, underscoring a shift towards more interactive and personalized learning experiences. Additionally, AI chatbots are increasingly considered valuable supplements to video tutorials, indicating their growing role in the developers' learning resources. These insights offer valuable directions for educators and the software development community by shedding light on the evolving preferences toward learning resources in the era of ChatGPT.
- Abstract(参考訳): 最近のトレンドはビデオチュートリアルのような魅力的なフォーマットを好んでいる。
ChatGPTのような大規模言語モデル(LLM)の出現は、新しい学習パラダイムを提示します。
ソフトウェア開発と教育におけるLCMの可能性について、既存の研究が検討している一方で、開発者の学習とソリューション探索行動への影響は、まだ解明されていないままである。
このギャップに対処するため、ソフトウェア開発者とコンピュータサイエンスの学生を対象に調査を行い、341の回答を集め、そのうち268が完成し分析した。
本研究では,ChatGPTのようなAIチャットボットが,新たなスキル獲得や技術探索,プログラミング問題の解決において,開発者の学習嗜好にどのように影響しているかを検討する。
定量的かつ質的な分析を通じて、ビデオチュートリアル、執筆チュートリアル、Q&Aフォーラムなどの従来の学習資源をAIツールが補うか、置き換えるかを検討する。
ビデオチュートリアルが包括的カバレッジに強く好まれている一方で、回答者の多くは、AIチャットボットを、よりインタラクティブでパーソナライズされた学習体験へのシフトを裏付ける、記述されたチュートリアルの代替として見ている。
さらに、AIチャットボットは、ビデオチュートリアルの貴重なサプリメントと見なされ、開発者の学習リソースにおける彼らの役割が増していることを示している。
これらの洞察は、ChatGPT時代の学習リソースに対する進化する好みに光を当てることで、教育者やソフトウェア開発コミュニティにとって貴重な方向を提供する。
関連論文リスト
- ChatISA: A Prompt-Engineered Chatbot for Coding, Project Management, Interview and Exam Preparation Activities [0.6784745592354215]
ChatISAは、コーディングの問い合わせ、プロジェクト管理、試験の準備、インタビューの準備に対処する堅牢なツールである。
ChatISAの実装は、倫理的ガイドラインの必要性や、AI利用と学生機関の維持とのバランスなど、重要な洞察と課題を明らかにした。
ChatISAのすべてのコードはGitHubで公開されており、他の機関は、カリキュラム内で同様のAI駆動の教育ツールをカスタマイズし、統合することができる。
論文 参考訳(メタデータ) (2024-06-13T04:00:07Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - Integrating A.I. in Higher Education: Protocol for a Pilot Study with 'SAMCares: An Adaptive Learning Hub' [0.6990493129893112]
本研究は,「SAMCares」と呼ぶ革新的な研究仲間を紹介することを目的としている。
このシステムは、Large Language Model(LLM)とRetriever-Augmented Generation(RAG)を利用して、リアルタイム、コンテキスト認識、適応的な教育サポートを提供する。
論文 参考訳(メタデータ) (2024-05-01T05:39:07Z) - How to Build an AI Tutor that Can Adapt to Any Course and Provide Accurate Answers Using Large Language Model and Retrieval-Augmented Generation [0.0]
OpenAI Assistants APIにより、AI Tutorは、ファイルやチャット履歴を簡単に埋め込み、保存、検索、管理できる。
AI Tutorのプロトタイプは、ソースの引用で関連性があり正確な回答を生成する能力を示している。
論文 参考訳(メタデータ) (2023-11-29T15:02:46Z) - AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in
CS Education [8.898863361318817]
4つの異なるチャットボットを備えた新しい学習環境を開発し,実装し,評価する。
これらの役割は、学習者(能力、自律性、関連性)の3つの本質的な心理的ニーズを満たす。
このシステムは、質問に基づく学習パラダイムを採用し、学生に質問をし、解決策を求め、その好奇心を探求するよう促す。
論文 参考訳(メタデータ) (2023-08-08T02:13:44Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Systematic Review for AI-based Language Learning Tools [0.0]
このレビューは、2017年から2020年にかけて開発されたAIツールに関する情報を合成した。
これらのツールの大部分は、機械学習と自然言語処理を利用している。
これらのツールを使用した後、学習者は言語能力と知識の向上を実演した。
論文 参考訳(メタデータ) (2021-10-29T11:54:51Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。