論文の概要: Accurate and Uncertainty-Aware Multi-Task Prediction of HEA Properties Using Prior-Guided Deep Gaussian Processes
- arxiv url: http://arxiv.org/abs/2506.14828v1
- Date: Fri, 13 Jun 2025 17:40:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.408724
- Title: Accurate and Uncertainty-Aware Multi-Task Prediction of HEA Properties Using Prior-Guided Deep Gaussian Processes
- Title(参考訳): 先導深いガウス過程を用いたHEA特性の高精度かつ不確実性を考慮したマルチタスク予測
- Authors: Sk Md Ahnaf Akif Alvi, Mrinalini Mulukutla, Nicolas Flores, Danial Khatamsaz, Jan Janssen, Danny Perez, Douglas Allaire, Vahid Attari, Raymundo Arroyave,
- Abstract要約: 本研究では、従来のガウス過程(cGP)、ディープガウス過程(DGP)、マルチ出力回帰のためのエンコーダデコーダニューラルネットワーク、およびAlCoCrCuFeMnNiV HEAシステムの実験および計算特性のハイブリッドデータセットに適用したXGBoostの適合性能を系統的に評価した。
- 参考スコア(独自算出の注目度): 0.48370725368505757
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surrogate modeling techniques have become indispensable in accelerating the discovery and optimization of high-entropy alloys(HEAs), especially when integrating computational predictions with sparse experimental observations. This study systematically evaluates the fitting performance of four prominent surrogate models conventional Gaussian Processes(cGP), Deep Gaussian Processes(DGP), encoder-decoder neural networks for multi-output regression and XGBoost applied to a hybrid dataset of experimental and computational properties in the AlCoCrCuFeMnNiV HEA system. We specifically assess their capabilities in predicting correlated material properties, including yield strength, hardness, modulus, ultimate tensile strength, elongation, and average hardness under dynamic and quasi-static conditions, alongside auxiliary computational properties. The comparison highlights the strengths of hierarchical and deep modeling approaches in handling heteroscedastic, heterotopic, and incomplete data commonly encountered in materials informatics. Our findings illustrate that DGP infused with machine learning-based prior outperform other surrogates by effectively capturing inter-property correlations and input-dependent uncertainty. This enhanced predictive accuracy positions advanced surrogate models as powerful tools for robust and data-efficient materials design.
- Abstract(参考訳): 高エントロピー合金(HEAs)の発見と最適化、特に計算予測とスパースな実験観測の統合には、サロゲートモデリング技術は不可欠である。
本研究では、従来のガウス過程(cGP)、ディープガウス過程(DGP)、マルチ出力回帰のためのエンコーダデコーダニューラルネットワーク、およびAlCoCrCuFeMnNiV HEAシステムの実験および計算特性のハイブリッドデータセットに適用したXGBoostの適合性能を系統的に評価した。
本研究では, 動的および準静的条件下での降伏強度, 硬さ, 弾性率, 究極張力, 伸長, 平均硬さなど, 相関する材料特性の予測能力について, 補助計算特性とともに評価する。
この比較は、材料情報学でよく見られるヘテロセダスティック、ヘテロトピー、不完全なデータを扱うための階層的および深層モデリングアプローチの強みを強調している。
以上の結果から,DGPは他のサロゲートよりも優れた機械学習を応用し,プロパティ相関と入力依存の不確かさを効果的に捉えた。
この予測精度の向上は、堅牢でデータ効率のよい材料設計のための強力なツールとして、高度なサロゲートモデルの位置を定めている。
関連論文リスト
- PIGPVAE: Physics-Informed Gaussian Process Variational Autoencoders [42.8983261737774]
本稿では,物理制約を組み込んでデータから学習し,性能を向上させる新しい生成モデルを提案する。
生成過程に物理モデルを組み込むことで、VAEアーキテクチャを拡張し、基礎となるダイナミクスをより効果的に捉えることができる。
我々はPIGPVAEが観測された分布を超えて現実的なサンプルを作成できることを示した。
論文 参考訳(メタデータ) (2025-05-25T21:12:01Z) - Model Selection for Gaussian-gated Gaussian Mixture of Experts Using Dendrograms of Mixing Measures [24.865197779389323]
Mixture of Experts (MoE)モデルは、統計学と機械学習において広く利用されているアンサンブル学習アプローチのクラスである。
混合成分の真の数を一貫した推定が可能なガウスゲート型MoEモデルに新しい拡張を導入する。
合成データを用いた実験結果から,提案手法の有効性が示唆された。
論文 参考訳(メタデータ) (2025-05-19T12:41:19Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
生成検索は、検索を自己回帰生成タスクとして再構成し、大きな言語モデルがクエリから直接ターゲット文書を生成する。
生成的検索におけるトレーニングと推論のスケーリング法則を体系的に検討し,モデルのサイズ,トレーニングデータスケール,推論時間計算が協調的に性能に与える影響について検討した。
論文 参考訳(メタデータ) (2025-03-24T17:59:03Z) - Single Domain Generalization with Model-aware Parametric Batch-wise Mixup [22.709796153794507]
単一ドメインの一般化は、マシンラーニングの分野において、依然として深刻な課題である。
本稿では,モデル認識型パラメトリックバッチ・ワイド・ミックスアップ(Parametric Batch-wise Mixup)と呼ばれる新しいデータ拡張手法を提案する。
機能間相関を利用することで、パラメータ化されたミックスアップジェネレータは、複数のインスタンスにまたがる機能の組み合わせにおいて、さらなる汎用性を導入する。
論文 参考訳(メタデータ) (2025-02-22T03:45:18Z) - fastHDMI: Fast Mutual Information Estimation for High-Dimensional Data [2.9901605297536027]
我々は高次元データセットにおける効率的な変数スクリーニングのために設計されたPythonパッケージであるfastHDMIを紹介した。
この研究は3つの相互情報推定手法のニューロイメージング変数選択への応用を開拓した。
論文 参考訳(メタデータ) (2024-10-14T01:49:53Z) - Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models [42.16524616409125]
本研究では,大規模ドッキングコンフォーメーションの事前学習により,優れた性能を有するタンパク質リガンド構造予測モデルが得られることを示す。
提案モデルであるHelixDockは,物理ベースのドッキングツールによってカプセル化された物理知識を,事前学習期間中に取得することを目的としている。
論文 参考訳(メタデータ) (2023-10-21T05:54:26Z) - Learning in latent spaces improves the predictive accuracy of deep
neural operators [0.0]
L-DeepONetは標準のDeepONetの拡張であり、高次元PDE入力の潜在表現と適切なオートエンコーダで識別される出力関数を利用する。
L-DeepONetは時間依存PDEの精度と計算効率の両面で標準手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-15T17:13:09Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGCは、低リソース環境でより正確で堅牢な学習を実現することを目的とした、新しい生成データ拡張手法である。
G-DAUGCは、バックトランスレーションに基づく既存のデータ拡張手法を一貫して上回っている。
分析の結果,G-DAUGCは多種多様な流線型学習例を産出し,その選択と学習アプローチが性能向上に重要であることが示された。
論文 参考訳(メタデータ) (2020-04-24T06:12:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。