AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion
- URL: http://arxiv.org/abs/2410.08453v1
- Date: Fri, 11 Oct 2024 02:03:21 GMT
- Title: AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion
- Authors: Yuting Xie, Xianda Guo, Cong Wang, Kunhua Liu, Long Chen,
- Abstract summary: AdvDiffuser is an adversarial framework for generating safety-critical driving scenarios through guided diffusion.
We show that AdvDiffuser can be applied to various tested systems with minimal warm-up episode data.
- Score: 6.909801263560482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety-critical scenarios are infrequent in natural driving environments but hold significant importance for the training and testing of autonomous driving systems. The prevailing approach involves generating safety-critical scenarios automatically in simulation by introducing adversarial adjustments to natural environments. These adjustments are often tailored to specific tested systems, thereby disregarding their transferability across different systems. In this paper, we propose AdvDiffuser, an adversarial framework for generating safety-critical driving scenarios through guided diffusion. By incorporating a diffusion model to capture plausible collective behaviors of background vehicles and a lightweight guide model to effectively handle adversarial scenarios, AdvDiffuser facilitates transferability. Experimental results on the nuScenes dataset demonstrate that AdvDiffuser, trained on offline driving logs, can be applied to various tested systems with minimal warm-up episode data and outperform other existing methods in terms of realism, diversity, and adversarial performance.
Related papers
- SimADFuzz: Simulation-Feedback Fuzz Testing for Autonomous Driving Systems [5.738863204900633]
SimADFuzz is a novel framework designed to generate high-quality scenarios that reveal violations in autonomous driving systems.
SimADFuzz employs violation prediction models, which evaluate the likelihood of ADS violations, to optimize scenario selection.
Comprehensive experiments demonstrate that SimADFuzz outperforms state-of-the-art fuzzers by identifying 32 more unique violations.
arXiv Detail & Related papers (2024-12-18T12:49:57Z) - Generating Critical Scenarios for Testing Automated Driving Systems [5.975915967339764]
AVASTRA is a Reinforcement Learning-based approach to generate realistic critical scenarios for testing Autonomous Driving System.
Results show AVASTRA's ability to outperform the state-of-the-art approach by generating 30% to 115% more collision scenarios.
arXiv Detail & Related papers (2024-12-03T16:59:30Z) - Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
Large Language Models (LLMs) have shown promise in autonomous driving.
This paper introduces a framework for generating diverse Out-Of-Distribution (OOD) driving scenarios.
We evaluate our framework through extensive simulations and introduce a new "OOD-ness" metric.
arXiv Detail & Related papers (2024-11-25T16:38:17Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [2.773055342671194]
We introduce a natural adversarial scenario generation solution using naturalistic human driving priors and reinforcement learning techniques.
Our findings demonstrate that the proposed model can generate realistic safety-critical test scenarios covering both naturalness and adversariality.
arXiv Detail & Related papers (2024-08-06T13:58:56Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles [76.46575807165729]
We propose AdvSim, an adversarial framework to generate safety-critical scenarios for any LiDAR-based autonomy system.
By simulating directly from sensor data, we obtain adversarial scenarios that are safety-critical for the full autonomy stack.
arXiv Detail & Related papers (2021-01-16T23:23:12Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z) - Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios [10.53961877853783]
We propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments.
Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity.
Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles.
arXiv Detail & Related papers (2020-04-14T14:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.