Why pre-training is beneficial for downstream classification tasks?
- URL: http://arxiv.org/abs/2410.08455v1
- Date: Fri, 11 Oct 2024 02:13:16 GMT
- Title: Why pre-training is beneficial for downstream classification tasks?
- Authors: Xin Jiang, Xu Cheng, Zechao Li,
- Abstract summary: We propose to quantitatively and explicitly explain effects of pre-training on the downstream task from a novel game-theoretic view.
Specifically, we extract and quantify the knowledge encoded by the pre-trained model.
We discover that only a small amount of pre-trained model's knowledge is preserved for the inference of downstream tasks.
- Score: 32.331679393303446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-training has exhibited notable benefits to downstream tasks by boosting accuracy and speeding up convergence, but the exact reasons for these benefits still remain unclear. To this end, we propose to quantitatively and explicitly explain effects of pre-training on the downstream task from a novel game-theoretic view, which also sheds new light into the learning behavior of deep neural networks (DNNs). Specifically, we extract and quantify the knowledge encoded by the pre-trained model, and further track the changes of such knowledge during the fine-tuning process. Interestingly, we discover that only a small amount of pre-trained model's knowledge is preserved for the inference of downstream tasks. However, such preserved knowledge is very challenging for a model training from scratch to learn. Thus, with the help of this exclusively learned and useful knowledge, the model fine-tuned from pre-training usually achieves better performance than the model training from scratch. Besides, we discover that pre-training can guide the fine-tuned model to learn target knowledge for the downstream task more directly and quickly, which accounts for the faster convergence of the fine-tuned model.
Related papers
- Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models [51.20499954955646]
Large language models (LLMs) acquire vast amounts of knowledge from extensive text corpora during the pretraining phase.
In later stages such as fine-tuning and inference, the model may encounter knowledge not covered in the initial training.
We propose a two-stage fine-tuning strategy to improve the model's overall test accuracy and knowledge retention.
arXiv Detail & Related papers (2024-10-08T08:35:16Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Fine-tuning can cripple your foundation model; preserving features may be the solution [87.35911633187204]
A fine-tuned model's ability to recognize concepts on tasks is reduced significantly compared to its pre-trained counterpart.
We propose a new fine-tuning method called $textitLDIFS$ that, while learning new concepts related to the downstream task, allows a model to preserve its pre-trained knowledge as well.
arXiv Detail & Related papers (2023-08-25T11:49:51Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks.
We propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters.
arXiv Detail & Related papers (2023-06-05T15:11:59Z) - Informed Pre-Training on Prior Knowledge [6.666503127282259]
When training data is scarce, the incorporation of additional prior knowledge can assist the learning process.
In this paper, we propose a novel informed machine learning approach and suggest to pre-train on prior knowledge.
arXiv Detail & Related papers (2022-05-23T16:24:40Z) - Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative
Priors [59.93972277761501]
We show that we can learn highly informative posteriors from the source task, through supervised or self-supervised approaches.
This simple modular approach enables significant performance gains and more data-efficient learning on a variety of downstream classification and segmentation tasks.
arXiv Detail & Related papers (2022-05-20T16:19:30Z) - Knowledge Distillation as Efficient Pre-training: Faster Convergence,
Higher Data-efficiency, and Better Transferability [53.27240222619834]
Knowledge Distillation as Efficient Pre-training aims to efficiently transfer the learned feature representation from pre-trained models to new student models for future downstream tasks.
Our method performs comparably with supervised pre-training counterparts in 3 downstream tasks and 9 downstream datasets requiring 10x less data and 5x less pre-training time.
arXiv Detail & Related papers (2022-03-10T06:23:41Z) - An Empirical Investigation of the Role of Pre-training in Lifelong
Learning [21.995593026269578]
We show that generic pre-training implicitly alleviates the effects of catastrophic forgetting when learning multiple tasks sequentially.
We study this phenomenon by analyzing the loss landscape, finding that pre-trained weights appear to ease forgetting by leading to wider minima.
arXiv Detail & Related papers (2021-12-16T19:00:55Z) - A study on the plasticity of neural networks [21.43675319928863]
We discuss the implication of losing plasticity for continual learning.
We show that a pretrained model on data from the same distribution as the one it is fine-tuned on might not reach the same generalisation as a freshly initialised model.
arXiv Detail & Related papers (2021-05-31T18:21:06Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.