Personalized Item Representations in Federated Multimodal Recommendation
- URL: http://arxiv.org/abs/2410.08478v2
- Date: Mon, 14 Oct 2024 07:55:16 GMT
- Title: Personalized Item Representations in Federated Multimodal Recommendation
- Authors: Zhiwei Li, Guodong Long, Jing Jiang, Chengqi Zhang,
- Abstract summary: Federated Multimodal Recommendation System, called FedMR, encodes multimodal item data.
FedMR is compatible with existing ID-based federated recommendation systems.
Experiments on four real-world multimodal datasets demonstrate FedMR's effectiveness.
- Score: 37.52127488593226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated recommendation systems are essential for providing personalized recommendations while protecting user privacy. However, current methods mainly rely on ID-based item embeddings, neglecting the rich multimodal information of items. To address this, we propose a Federated Multimodal Recommendation System, called FedMR. FedMR uses a foundation model on the server to encode multimodal item data, such as images and text. To handle data heterogeneity caused by user preference differences, FedMR introduces a Mixing Feature Fusion Module on each client, which adjusts fusion strategy weights based on user interaction history to generate personalized item representations that capture users' fine-grained preferences. FedMR is compatible with existing ID-based federated recommendation systems, improving performance without modifying the original framework. Experiments on four real-world multimodal datasets demonstrate FedMR's effectiveness. The code is available at https://anonymous.4open.science/r/FedMR.
Related papers
- FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation [50.438552588818]
We propose textbfFindRec (textbfFlexible unified textbfinformation textbfdisentanglement for multi-modal sequential textbfRecommendation)<n>A Stein kernel-based Integrated Information Coordination Module (IICM) theoretically guarantees distribution consistency between multimodal features and ID streams.<n>A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance.
arXiv Detail & Related papers (2025-07-07T04:09:45Z) - Hyper-modal Imputation Diffusion Embedding with Dual-Distillation for Federated Multimodal Knowledge Graph Completion [59.54067771781552]
We propose a framework named MMFeD3-HidE for addressing multimodal uncertain unavailability and multimodal client heterogeneity challenges of FedMKGC.<n>We propose a FedMKGC benchmark for a comprehensive evaluation, consisting of a general FedMKGC backbone named MMFedE, datasets with heterogeneous multimodal information, and three groups of constructed baselines.
arXiv Detail & Related papers (2025-06-27T09:32:58Z) - BiXFormer: A Robust Framework for Maximizing Modality Effectiveness in Multi-Modal Semantic Segmentation [55.486872677160015]
We reformulate multi-modal semantic segmentation as a mask-level classification task.<n>We propose BiXFormer, which integrates Unified Modality Matching (UMM) and Cross Modality Alignment (CMA)<n> Experiments on both synthetic and real-world multi-modal benchmarks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2025-06-04T08:04:58Z) - Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation [4.518104756199573]
Molar is a sequential recommendation framework that integrates multiple content modalities with ID information to capture collaborative signals effectively.
By seamlessly combining multimodal content with collaborative filtering insights, Molar captures both user interests and contextual semantics, leading to superior recommendation accuracy.
arXiv Detail & Related papers (2024-12-24T05:23:13Z) - FedMoE-DA: Federated Mixture of Experts via Domain Aware Fine-grained Aggregation [22.281467168796645]
Federated learning (FL) is a collaborative machine learning approach that enables multiple clients to train models without sharing their private data.<n>We propose FedMoE-DA, a new FL model training framework that incorporates a novel domain-aware, fine-grained aggregation strategy to enhance the robustness, personalizability, and communication efficiency simultaneously.
arXiv Detail & Related papers (2024-11-04T14:29:04Z) - Part-Whole Relational Fusion Towards Multi-Modal Scene Understanding [51.96911650437978]
Multi-modal fusion has played a vital role in multi-modal scene understanding.
Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion.
We propose a relational Part-Whole Fusion (PWRF) framework for multi-modal scene understanding.
arXiv Detail & Related papers (2024-10-19T02:27:30Z) - FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
We present FedMoE, the efficient personalized Federated Learning framework to address data heterogeneity.
FedMoE is composed of two fine-tuning stages. In the first stage, FedMoE simplifies the problem by conducting a search based on observed activation patterns.
In the second stage, these submodels are distributed to clients for further training and returned for server aggregating.
arXiv Detail & Related papers (2024-08-21T03:16:12Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy.
This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously.
To effectively train the proposed framework, we model the problem as a specialized Variational AutoEncoder (VAE) task by integrating user interaction vector reconstruction with missing value prediction.
arXiv Detail & Related papers (2024-08-16T05:49:14Z) - Towards Personalized Federated Multi-Scenario Multi-Task Recommendation [22.095138650857436]
PF-MSMTrec is a novel framework for personalized federated multi-scenario multi-task recommendation.
We introduce a bottom-up joint learning mechanism to address the unique challenges of multiple optimization conflicts.
Our proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-06-27T07:10:37Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Dual Personalization on Federated Recommendation [50.4115315992418]
Federated recommendation is a new Internet service architecture that aims to provide privacy-preserving recommendation services in federated settings.
This paper proposes a novel Personalized Federated Recommendation (PFedRec) framework to learn many user-specific lightweight models.
We also propose a new dual personalization mechanism to effectively learn fine-grained personalization on both users and items.
arXiv Detail & Related papers (2023-01-16T05:26:07Z) - Diversely Regularized Matrix Factorization for Accurate and Aggregately
Diversified Recommendation [15.483426620593013]
DivMF (Diversely Regularized Matrix Factorization) is a novel matrix factorization method for aggregately diversified recommendation.
We show that DivMF achieves the state-of-the-art performance in aggregately diversified recommendation.
arXiv Detail & Related papers (2022-10-19T08:49:39Z) - FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation [7.621960305708476]
We present the first unsupervised one-shot federated CF implementation, named FedSPLIT, based on NMF joint factorization.
FedSPLIT can obtain similar results than the state of the art (and even outperform it in certain situations) with a substantial decrease in the number of communications.
arXiv Detail & Related papers (2022-05-04T23:42:14Z) - Federated Multi-view Matrix Factorization for Personalized
Recommendations [53.74747022749739]
We introduce the federated multi-view matrix factorization method that extends the federated learning framework to matrix factorization with multiple data sources.
Our method is able to learn the multi-view model without transferring the user's personal data to a central server.
arXiv Detail & Related papers (2020-04-08T21:07:50Z) - Meta Matrix Factorization for Federated Rating Predictions [84.69112252208468]
Federated recommender systems have distinct advantages in terms of privacy protection over traditional recommender systems.
Previous work on federated recommender systems does not fully consider the limitations of storage, RAM, energy and communication bandwidth in a mobile environment.
Our goal in this paper is to design a novel federated learning framework for rating prediction (RP) for mobile environments.
arXiv Detail & Related papers (2019-10-22T16:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.