論文の概要: Humanity in AI: Detecting the Personality of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.08545v1
- Date: Fri, 11 Oct 2024 05:53:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 23:14:57.504148
- Title: Humanity in AI: Detecting the Personality of Large Language Models
- Title(参考訳): AIにおける人間性: 大規模言語モデルの個性を検出する
- Authors: Baohua Zhan, Yongyi Huang, Wenyao Cui, Huaping Zhang, Jianyun Shang,
- Abstract要約: アンケートは大規模言語モデル(LLM)の個性を検出する一般的な方法である
本稿では,テキストマイニングとアンケート手法の組み合わせを提案する。
LLMのパーソナリティは、事前訓練されたデータから導かれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Questionnaires are a common method for detecting the personality of Large Language Models (LLMs). However, their reliability is often compromised by two main issues: hallucinations (where LLMs produce inaccurate or irrelevant responses) and the sensitivity of responses to the order of the presented options. To address these issues, we propose combining text mining with questionnaires method. Text mining can extract psychological features from the LLMs' responses without being affected by the order of options. Furthermore, because this method does not rely on specific answers, it reduces the influence of hallucinations. By normalizing the scores from both methods and calculating the root mean square error, our experiment results confirm the effectiveness of this approach. To further investigate the origins of personality traits in LLMs, we conduct experiments on both pre-trained language models (PLMs), such as BERT and GPT, as well as conversational models (ChatLLMs), such as ChatGPT. The results show that LLMs do contain certain personalities, for example, ChatGPT and ChatGLM exhibit the personality traits of 'Conscientiousness'. Additionally, we find that the personalities of LLMs are derived from their pre-trained data. The instruction data used to train ChatLLMs can enhance the generation of data containing personalities and expose their hidden personality. We compare the results with the human average personality score, and we find that the personality of FLAN-T5 in PLMs and ChatGPT in ChatLLMs is more similar to that of a human, with score differences of 0.34 and 0.22, respectively.
- Abstract(参考訳): アンケートは,Large Language Models (LLMs) の個性を検出する一般的な方法である。
しかしながら、その信頼性は幻覚(LLMが不正確または無関係に反応する)と、提示されたオプションの順序に対する応答の感度の2つの主要な問題によってしばしば損なわれる。
これらの課題に対処するために,テキストマイニングとアンケート手法を組み合わせることを提案する。
テキストマイニングは、オプションの順序に影響されることなく、LSMの反応から心理的特徴を抽出することができる。
さらに, 本手法は特定の回答に依存しないため, 幻覚の影響を低減させる。
両手法のスコアの正規化とルート平均二乗誤差の計算により,本手法の有効性を検証した。
LLMの性格特性の起源をさらに解明するために, BERT や GPT などの事前学習言語モデル (PLM) と ChatGPT のような会話モデル (ChatLLM) の両方で実験を行った。
その結果,LLMには特定の個性があることが明らかとなった。例えば,ChatGPTとChatGLMは「良心」の性格特性を示す。
さらに, LLMの個人性は, 事前学習したデータから導かれることがわかった。
ChatLLMを訓練するために使用される命令データは、個性を含むデータの生成を高め、その隠された個性を公開することができる。
結果と人間の平均的性格スコアを比較し,ChatLLMsにおけるPLMにおけるFLAN-T5とChatGPTの性格は,それぞれ0.34と0.22のスコア差で人間と類似していることがわかった。
関連論文リスト
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
大規模言語モデル (LLM) は、様々な性格特性をシミュレートする能力が増している。
LLMにおけるパーソナリティ特性誘導のためのニューロンに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-16T07:47:45Z) - Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics [29.325576963215163]
大規模言語モデル(LLM)は会話エージェントとして様々な領域に適応している。
LLMのパーソナリティを評価するために設計された8Kのマルチチョイス質問からなる新しいベンチマークTRAITを紹介する。
LLMは独特で一貫した性格を示し、トレーニングデータの影響を強く受けている。
論文 参考訳(メタデータ) (2024-06-20T19:50:56Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
パーソナリティ検出は、ソーシャルメディア投稿に根ざした性格特性を検出することを目的としている。
既存のほとんどのメソッドは、事前訓練された言語モデルを微調整することで、ポスト機能を直接学習する。
本稿では,大規模言語モデル (LLM) に基づくテキスト拡張強化人格検出モデルを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:10:18Z) - Eliciting Personality Traits in Large Language Models [0.0]
大規模言語モデル(LLM)は採用の文脈において、候補者と雇用主の両方が利用している。
本研究は,異なる入力プロンプトに基づいて,それらの出力変動を調べることによって,そのようなモデルをよりよく理解することを目的とする。
論文 参考訳(メタデータ) (2024-02-13T10:09:00Z) - Challenging the Validity of Personality Tests for Large Language Models [2.9123921488295768]
大規模言語モデル(LLM)は、テキストベースのインタラクションにおいて、ますます人間らしく振る舞う。
人格検査に対するLLMの反応は、人間の反応から体系的に逸脱する。
論文 参考訳(メタデータ) (2023-11-09T11:54:01Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
大規模言語モデル(LLM)が人間の反応バイアスをどの程度反映しているかについて検討する。
アンケート調査では, LLMが人間のような応答バイアスを示すかどうかを評価するためのデータセットとフレームワークを設計した。
9つのモデルに対する総合的な評価は、一般のオープンかつ商用のLCMは、一般的に人間のような振る舞いを反映しないことを示している。
論文 参考訳(メタデータ) (2023-11-07T15:40:43Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
大規模言語モデル(LLM)は、人間の振る舞いをシミュレートするエージェントとして用いられる。
本稿では, ベートーヴェン, クレオパトラ女王, ユリウス・カエサルなど, LLM に特定の人物として行動するように教えるキャラクタ-LLMを紹介する。
論文 参考訳(メタデータ) (2023-10-16T07:58:56Z) - Can ChatGPT Assess Human Personalities? A General Evaluation Framework [70.90142717649785]
大きな言語モデル(LLM)は、様々な分野で印象的な成果を上げてきたが、その潜在的な人間のような心理学はいまだに研究されていない。
本稿では,Mers Briggs Type Indicator (MBTI) テストに基づく人格評価のための総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-01T06:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。