論文の概要: Conjugated Semantic Pool Improves OOD Detection with Pre-trained Vision-Language Models
- arxiv url: http://arxiv.org/abs/2410.08611v1
- Date: Fri, 11 Oct 2024 08:24:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:54:46.347860
- Title: Conjugated Semantic Pool Improves OOD Detection with Pre-trained Vision-Language Models
- Title(参考訳): 共役セマンティックプールによる事前学習型視覚言語モデルによるOOD検出の改善
- Authors: Mengyuan Chen, Junyu Gao, Changsheng Xu,
- Abstract要約: ゼロショット・アウト・オブ・ディストリビューション(OOD)検出のための簡単なパイプラインでは、広範なセマンティックプールから潜在的OODラベルを選択する必要がある。
性能向上にはセマンティックプールの拡張が必要であると理論化します。
我々は,CSPによるOODラベル候補の拡大が要件を満たし,FPR95において既存の作品の7.89%を上回っていることを示す。
- 参考スコア(独自算出の注目度): 70.82728812001807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A straightforward pipeline for zero-shot out-of-distribution (OOD) detection involves selecting potential OOD labels from an extensive semantic pool and then leveraging a pre-trained vision-language model to perform classification on both in-distribution (ID) and OOD labels. In this paper, we theorize that enhancing performance requires expanding the semantic pool, while increasing the expected probability of selected OOD labels being activated by OOD samples, and ensuring low mutual dependence among the activations of these OOD labels. A natural expansion manner is to adopt a larger lexicon; however, the inevitable introduction of numerous synonyms and uncommon words fails to meet the above requirements, indicating that viable expansion manners move beyond merely selecting words from a lexicon. Since OOD detection aims to correctly classify input images into ID/OOD class groups, we can "make up" OOD label candidates which are not standard class names but beneficial for the process. Observing that the original semantic pool is comprised of unmodified specific class names, we correspondingly construct a conjugated semantic pool (CSP) consisting of modified superclass names, each serving as a cluster center for samples sharing similar properties across different categories. Consistent with our established theory, expanding OOD label candidates with the CSP satisfies the requirements and outperforms existing works by 7.89% in FPR95. Codes are available in https://github.com/MengyuanChen21/NeurIPS2024-CSP.
- Abstract(参考訳): ゼロショットアウト・オブ・ディストリビューション(OOD)検出のための簡単なパイプラインは、広範囲なセマンティックプールから潜在的OODラベルを選択し、訓練済みの視覚言語モデルを利用して、イン・ディストリビューション(ID)とOODラベルの両方の分類を実行する。
本稿では,OOD ラベルが活性化される可能性を高めつつ,これらの OOD ラベルのアクティベーションの相互依存性を低く抑えつつ,セマンティックプールの拡大が求められることを理論的に論じる。
自然な拡張法はより大きな語彙を採用することであるが、多くの同義語や非一般的な単語の必然的な導入は上記の要件を満たすことに失敗し、実行可能な拡張法が単に語彙から単語を選択することを超えることを示唆している。
OOD検出は、入力画像をID/OODクラスグループに正しく分類することを目的としているため、標準クラス名ではないがプロセスに有利なOODラベル候補を“メイクアップ”することができる。
元のセマンティックプールが未修正の特定のクラス名から成り立っていることを観察し、修正されたスーパークラス名からなる共役セマンティックプール(CSP)を構築し、それぞれ異なるカテゴリで類似したプロパティを共有するクラスタセンターとして機能する。
確立された理論と一致し、CSPによるOODラベル候補の拡大が要求を満たし、FPR95において既存の作品の7.89%を上回ります。
コードはhttps://github.com/MengyuanChen21/NeurIPS2024-CSPで公開されている。
関連論文リスト
- Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
ID分布のセマンティック空間をより正確に定義する。
また,OOD と ID の区別性を保証する "Tractable OOD" の設定も定義する。
論文 参考訳(メタデータ) (2024-11-18T03:09:39Z) - COOD: Concept-based Zero-shot OOD Detection [12.361461338978732]
ゼロショットマルチラベルOOD検出フレームワークであるCOODを紹介する。
ラベルごとに肯定的概念と否定的概念の両方で意味空間を豊かにすることにより、我々のアプローチは複雑なラベル依存をモデル化する。
提案手法は既存のアプローチよりも優れており,VOCとデータセットの両方で平均95%のAUROCを実現している。
論文 参考訳(メタデータ) (2024-11-15T08:15:48Z) - Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection [18.275098909064127]
本研究では,大規模言語モデル(LLM)のための新しい微調整フレームワークを提案する。
ダイバーシティグラウンドのプロンプトチューニング手法を用いて,各IDクラスのセマンティックプロトタイプを構築した。
徹底的な評価のために,本手法を一般的な微調整手法と比較した。
論文 参考訳(メタデータ) (2024-09-17T12:07:17Z) - Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
既存のアウト・オブ・ディストリビューション(OOD)検出ベンチマークは、サンプルを新しいラベルでOODデータとして分類する。
いくつかの限界OODサンプルは、実際には分布内(ID)サンプルに密接なセマンティック内容を持ち、OODサンプルをソリテスパラドックス(英語版)と判定する。
この問題に対処するため,Incremental Shift OOD (IS-OOD) というベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-14T09:27:56Z) - Zero-Shot Out-of-Distribution Detection with Outlier Label Exposure [23.266183020469065]
Outlier Label Exposure (OLE)は、補助的なoutlierクラスラベルを用いたゼロショットOOD検出を強化するアプローチである。
OLE は検出性能を大幅に改善し,大規模 OOD およびハード OOD 検出ベンチマークの最先端性能を向上する。
論文 参考訳(メタデータ) (2024-06-03T10:07:21Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distriion (OOD) は未知のクラスからサンプルを識別することを目的としている。
我々は,大規模なコーパスデータベースから大量の負のラベルを抽出する,NegLabelと呼ばれる新しいポストホックOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T09:19:52Z) - How Does Fine-Tuning Impact Out-of-Distribution Detection for Vision-Language Models? [29.75562085178755]
数ショットダウンストリームタスクに対するOOD検出の微調整の影響について検討する。
以上の結果から,OODスコアの適切な選択はCLIPに基づく微調整に不可欠であることが示唆された。
また, 即時学習は, ゼロショットに比較して最先端のOOD検出性能を示すことを示す。
論文 参考訳(メタデータ) (2023-06-09T17:16:50Z) - Out-of-Distributed Semantic Pruning for Robust Semi-Supervised Learning [17.409939628100517]
我々は,OODセマンティック・プルーニング(OSP)と呼ばれる統合フレームワークを提案する。
OSPは、ID分類の精度を13.7%、TinyImageNetデータセットのOOD検出のAUROCの5.9%に上回っている。
論文 参考訳(メタデータ) (2023-05-29T15:37:07Z) - Estimating Soft Labels for Out-of-Domain Intent Detection [122.68266151023676]
Out-of-Domain (OOD)インテント検出は,実際の対話システムにおいて重要である。
擬似OODサンプルに対するソフトラベルを推定できる適応型ソフト擬似ラベル法(ASoul)を提案する。
論文 参考訳(メタデータ) (2022-11-10T13:31:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。