論文の概要: Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.08613v1
- Date: Fri, 11 Oct 2024 08:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:54:46.342172
- Title: Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation
- Title(参考訳): リモートセンシング画像セグメンテーションの参照のための双方向双方向相互干渉モデル
- Authors: Zhe Dong, Yuzhe Sun, Yanfeng Gu, Tianzhu Liu,
- Abstract要約: リモートセンシング画像セグメンテーション(RRSIS)の目標は、参照式によって識別された対象オブジェクトの画素レベルマスクを生成することである。
上記の課題に対処するため、クロスモーダル双方向相互作用モデル(CroBIM)と呼ばれる新しいRRSISフレームワークが提案されている。
RRSISの研究をさらに推し進めるために、52,472個の画像言語ラベル三重項からなる新しい大規模ベンチマークデータセットRISBenchを構築した。
- 参考スコア(独自算出の注目度): 9.109484087832058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a natural language expression and a remote sensing image, the goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression. In contrast to natural scenarios, expressions in RRSIS often involve complex geospatial relationships, with target objects of interest that vary significantly in scale and lack visual saliency, thereby increasing the difficulty of achieving precise segmentation. To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM). Specifically, a context-aware prompt modulation (CAPM) module is designed to integrate spatial positional relationships and task-specific knowledge into the linguistic features, thereby enhancing the ability to capture the target object. Additionally, a language-guided feature aggregation (LGFA) module is introduced to integrate linguistic information into multi-scale visual features, incorporating an attention deficit compensation mechanism to enhance feature aggregation. Finally, a mutual-interaction decoder (MID) is designed to enhance cross-modal feature alignment through cascaded bidirectional cross-attention, thereby enabling precise segmentation mask prediction. To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets. Extensive benchmarking on RISBench and two other prevalent datasets demonstrates the superior performance of the proposed CroBIM over existing state-of-the-art (SOTA) methods. The source code for CroBIM and the RISBench dataset will be publicly available at https://github.com/HIT-SIRS/CroBIM
- Abstract(参考訳): 自然言語表現とリモートセンシング画像が与えられた場合、リモートセンシング画像セグメンテーション(RRSIS)の目標は、参照表現によって識別された対象対象物の画素レベルマスクを生成することである。
自然のシナリオとは対照的に、RRSISの表現は複雑な地理空間的関係を伴い、対象の対象物は規模が大きく異なり、視覚的サリエンシが欠如しているため、正確なセグメンテーションを達成するのが困難になる。
上記の課題に対処するため、クロスモーダル双方向相互作用モデル(CroBIM)と呼ばれる新しいRRSISフレームワークが提案されている。
具体的には,文脈認識型プロンプト変調(CAPM)モジュールは,空間的位置関係とタスク固有の知識を言語的特徴に統合することにより,対象物を捕捉する能力を向上する。
さらに,言語情報とマルチスケールの視覚的特徴を統合するために,言語誘導型特徴集合(LGFA)モジュールを導入し,特徴集約を強化するために注意欠陥補償機構を組み込んだ。
最後に、相互干渉デコーダ(MID)は、カスケードされた双方向の相互アテンションを通じて、クロスモーダルな特徴アライメントを強化し、正確なセグメンテーションマスク予測を可能にするように設計されている。
RRSISの研究をさらに推し進めるために、52,472個の画像言語ラベル三重項からなる新しい大規模ベンチマークデータセットRISBenchを構築した。
RISBenchと他の2つの一般的なデータセットの大規模なベンチマークは、既存の最先端(SOTA)メソッドよりも提案されたCroBIMの優れたパフォーマンスを示している。
CroBIMとRISBenchデータセットのソースコードはhttps://github.com/HIT-SIRS/CroBIMで公開されている。
関連論文リスト
- Spatial Semantic Recurrent Mining for Referring Image Segmentation [63.34997546393106]
高品質なクロスモーダリティ融合を実現するために,Stextsuperscript2RMを提案する。
これは、言語特徴の分散、空間的意味的再帰的分離、パーセマンティック・セマンティック・バランシングという三部作の作業戦略に従う。
提案手法は他の最先端アルゴリズムに対して好適に機能する。
論文 参考訳(メタデータ) (2024-05-15T00:17:48Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS)は、自然言語で表現されたターゲットオブジェクトをピクセルレベルのシーン内でセグメントすることを目的としている。
マスク付きオートエンコーダ(MAE)に触発された新しい双方向トークンマスキングオートエンコーダ(BTMAE)を提案する。
BTMAEは、画像と言語の両方に欠けている機能をトークンレベルで再構築することで、画像から言語、言語へのイメージのコンテキストを学習する。
論文 参考訳(メタデータ) (2023-11-29T07:33:38Z) - Context-Enhanced Detector For Building Detection From Remote Sensing Images [41.3238458718635]
コンテキスト強化検出器(CEDet)と呼ばれる新しい手法を提案する。
提案手法では,3段階のカスケード構造を用いてコンテキスト情報の抽出を強化し,建物検出精度を向上させる。
提案手法は,CNBuilding-9P,CNBuilding-23P,SpaceNetを含む3つのビルディング検出ベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-11T16:33:30Z) - Position-Aware Contrastive Alignment for Referring Image Segmentation [65.16214741785633]
マルチモーダル特徴のアライメントを強化するために,位置認識型コントラストアライメントネットワーク(PCAN)を提案する。
1)自然言語記述に関連するすべてのオブジェクトの位置情報を提供する位置認識モジュール(PAM)と,2)マルチモーダルアライメントを強化するコントラスト言語理解モジュール(CLUM)の2つのモジュールで構成されている。
論文 参考訳(メタデータ) (2022-12-27T09:13:19Z) - Exploring Multi-Modal Representations for Ambiguity Detection &
Coreference Resolution in the SIMMC 2.0 Challenge [60.616313552585645]
会話型AIにおける効果的なあいまいさ検出と参照解決のためのモデルを提案する。
具体的には,TOD-BERTとLXMERTをベースとしたモデルを用いて,多数のベースラインと比較し,アブレーション実験を行う。
以上の結果から,(1)言語モデルでは曖昧さを検出するためにデータの相関を活用でき,(2)言語モデルではビジョンコンポーネントの必要性を回避できることがわかった。
論文 参考訳(メタデータ) (2022-02-25T12:10:02Z) - Phrase-Based Affordance Detection via Cyclic Bilateral Interaction [17.022853987801877]
我々は、視覚言語の観点から、手当を知覚し、困難なフレーズベースの手当検出問題を考察する。
言語と視覚の特徴を段階的に整合させるために,循環的二元整合性向上ネットワーク(CBCE-Net)を提案する。
具体的には、CBCE-Netは、視覚と言語の共通した特徴を進歩的に更新する相互指導型視覚言語モジュールと、循環的に物体との相互作用の認識を容易にする循環的相互作用モジュール(CIM)から構成される。
論文 参考訳(メタデータ) (2022-02-24T13:02:27Z) - Referring Image Segmentation via Cross-Modal Progressive Comprehension [94.70482302324704]
画像セグメンテーションの参照は、自然言語表現で与えられた記述によく一致するエンティティの前景マスクをセグメンテーションすることを目的としている。
従来のアプローチでは、暗黙的な特徴相互作用と視覚的モダリティと言語的モダリティの融合を用いてこの問題に対処していた。
本稿では,この課題に効果的に対応するために,Cross-Modal Progressive (CMPC) モジュールと Text-Guided Feature Exchange (TGFE) モジュールを提案する。
論文 参考訳(メタデータ) (2020-10-01T16:02:30Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。