Domain Generalization through the Lens of Angular Invariance
- URL: http://arxiv.org/abs/2210.15836v1
- Date: Fri, 28 Oct 2022 02:05:38 GMT
- Title: Domain Generalization through the Lens of Angular Invariance
- Authors: Yujie Jin, Xu Chu, Yasha Wang and Wenwu Zhu
- Abstract summary: Domain generalization (DG) aims at generalizing a classifier trained on multiple source domains to an unseen target domain with domain shift.
We propose a novel deep DG method called Angular Invariance Domain Generalization Network (AIDGN)
- Score: 44.76809026901016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization (DG) aims at generalizing a classifier trained on
multiple source domains to an unseen target domain with domain shift. A common
pervasive theme in existing DG literature is domain-invariant representation
learning with various invariance assumptions. However, prior works restrict
themselves to a radical assumption for realworld challenges: If a mapping
induced by a deep neural network (DNN) could align the source domains well,
then such a mapping aligns a target domain as well. In this paper, we simply
take DNNs as feature extractors to relax the requirement of distribution
alignment. Specifically, we put forward a novel angular invariance and the
accompanied norm shift assumption. Based on the proposed term of invariance, we
propose a novel deep DG method called Angular Invariance Domain Generalization
Network (AIDGN). The optimization objective of AIDGN is developed with a
von-Mises Fisher (vMF) mixture model. Extensive experiments on multiple DG
benchmark datasets validate the effectiveness of the proposed AIDGN method.
Related papers
- Label Alignment Regularization for Distribution Shift [63.228879525056904]
Recent work has highlighted the label alignment property (LAP) in supervised learning, where the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix.
We propose a regularization method for unsupervised domain adaptation that encourages alignment between the predictions in the target domain and its top singular vectors.
We report improved performance over domain adaptation baselines in well-known tasks such as MNIST-USPS domain adaptation and cross-lingual sentiment analysis.
arXiv Detail & Related papers (2022-11-27T22:54:48Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - T-SVDNet: Exploring High-Order Prototypical Correlations for
Multi-Source Domain Adaptation [41.356774580308986]
We propose a novel approach named T-SVDNet to address the task of Multi-source Domain Adaptation.
High-order correlations among multiple domains and categories are fully explored so as to better bridge the domain gap.
To avoid negative transfer brought by noisy source data, we propose a novel uncertainty-aware weighting strategy.
arXiv Detail & Related papers (2021-07-30T06:33:05Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.