論文の概要: GAI-Enabled Explainable Personalized Federated Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2410.08634v1
- Date: Fri, 11 Oct 2024 08:58:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:54:46.321477
- Title: GAI-Enabled Explainable Personalized Federated Semi-Supervised Learning
- Title(参考訳): GAIで説明可能な個人化フェデレーション半教師付き学習
- Authors: Yubo Peng, Feibo Jiang, Li Dong, Kezhi Wang, Kun Yang,
- Abstract要約: フェデレーテッド・ラーニング(Federated Learning, FL)は、人工知能(AI)モデルをトレーニングするモバイルユーザー(MU)のための一般的な分散アルゴリズムである。
我々は,XPFLと呼ばれるパーソナライズ可能なFLフレームワークを提案する。特にローカルトレーニングでは,生成型AI(GAI)モデルを用いて,大規模なラベルなしデータから学習する。
グローバルアグリゲーションにおいて、局所的および大域的FLモデルを特定の割合で融合することにより、新しい局所的モデルを得る。
最後に,提案したXPFLフレームワークの有効性をシミュレーションにより検証した。
- 参考スコア(独自算出の注目度): 29.931169585178818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a commonly distributed algorithm for mobile users (MUs) training artificial intelligence (AI) models, however, several challenges arise when applying FL to real-world scenarios, such as label scarcity, non-IID data, and unexplainability. As a result, we propose an explainable personalized FL framework, called XPFL. First, we introduce a generative AI (GAI) assisted personalized federated semi-supervised learning, called GFed. Particularly, in local training, we utilize a GAI model to learn from large unlabeled data and apply knowledge distillation-based semi-supervised learning to train the local FL model using the knowledge acquired from the GAI model. In global aggregation, we obtain the new local FL model by fusing the local and global FL models in specific proportions, allowing each local model to incorporate knowledge from others while preserving its personalized characteristics. Second, we propose an explainable AI mechanism for FL, named XFed. Specifically, in local training, we apply a decision tree to match the input and output of the local FL model. In global aggregation, we utilize t-distributed stochastic neighbor embedding (t-SNE) to visualize the local models before and after aggregation. Finally, simulation results validate the effectiveness of the proposed XPFL framework.
- Abstract(参考訳): Federated Learning (FL) は、モバイルユーザー(MU)がAIモデルを訓練するための一般的な分散アルゴリズムであるが、ラベル不足、非IIDデータ、説明不能など、現実のシナリオにFLを適用する際にいくつかの問題が発生する。
その結果、XPFLと呼ばれるパーソナライズ可能なFLフレームワークを提案する。
まず, GFed と呼ばれる, パーソナライズされた半教師付き学習を支援する生成AI(GAI)を導入する。
特に地域訓練では, GAIモデルを用いて, 大規模未ラベルデータから学習し, 知識蒸留に基づく半教師あり学習を適用し, GAIモデルから得られた知識を用いて, ローカルFLモデルを訓練する。
グローバルアグリゲーションにおいて、局所的およびグローバル的FLモデルを特定の割合で融合させることにより、各局所的モデルは、そのパーソナライズされた特性を維持しながら、他からの知識を取り入れられるようにすることで、新しい局所的FLモデルを得る。
第2に、FLのための説明可能なAI機構、XFedを提案する。
具体的には、局所学習において、局所FLモデルの入力と出力に一致する決定木を適用する。
グローバルアグリゲーションでは、t分散確率的隣接埋め込み(t-SNE)を用いて、アグリゲーション前後の局所モデルを視覚化する。
最後に,提案したXPFLフレームワークの有効性をシミュレーションにより検証した。
関連論文リスト
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
フェデレートラーニング(FL)は、直接データ共有を必要とせず、さまざまなサイトで機械学習モデルをトレーニングする効果により、大きな人気を集めている。
局所的な更新を伴うFLは通信効率のよい分散学習フレームワークであることが様々なアルゴリズムによって示されているが、局所的な更新によるFLの一般化性能は比較的低い。
論文 参考訳(メタデータ) (2024-09-05T19:00:18Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
マルチレベル・パーソナライズド・フェデレーション・ラーニング(MuPFL)という革新的パーソナライズド・パーソナライズド・ラーニング・フレームワークを導入する。
MuPFLは3つの重要なモジュールを統合している: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU), Prior Knowledge-assisted Fine-tuning (PKCF)。
様々な実世界のデータセットの実験では、MuPFLは極端に非i.d.と長い尾の条件下であっても、最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2024-05-10T11:52:53Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - Personalized Federated Learning with Hidden Information on Personalized
Prior [18.8426865970643]
本稿では,Bregmanの発散正規化を用いたモデル化のためのフレームワークであるpFedBreDを提案する。
実験の結果,提案手法は複数の公開ベンチマークにおいて他のPFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-19T12:45:19Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Personalized Federated Learning with Clustered Generalization [16.178571176116073]
学習環境における非I.D.データの困難な問題に対処することを目的とした,近年のパーソナライズドラーニング(PFL)について検討する。
訓練対象におけるPFL法と従来のFL法の主な違い
本稿では,FLにおける統計的不均一性の問題に対処するため,クラスタ化一般化という新しい概念を提案する。
論文 参考訳(メタデータ) (2021-06-24T14:17:00Z) - Convergence Time Optimization for Federated Learning over Wireless
Networks [160.82696473996566]
無線ユーザが(ローカル収集データを用いて訓練した)ローカルFLモデルを基地局(BS)に送信する無線ネットワークを考える。
中央コントローラとして機能するBSは、受信したローカルFLモデルを使用してグローバルFLモデルを生成し、それを全ユーザにブロードキャストする。
無線ネットワークにおけるリソースブロック(RB)の数が限られているため、ローカルFLモデルパラメータをBSに送信するために選択できるのは一部のユーザのみである。
各ユーザが独自のトレーニングデータサンプルを持っているため、BSは、収束したグローバルFLモデルを生成するために、すべてのローカルユーザFLモデルを含むことを好んでいる。
論文 参考訳(メタデータ) (2020-01-22T01:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。