論文の概要: Boosting Open-Vocabulary Object Detection by Handling Background Samples
- arxiv url: http://arxiv.org/abs/2410.08645v1
- Date: Fri, 11 Oct 2024 09:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:45:00.751402
- Title: Boosting Open-Vocabulary Object Detection by Handling Background Samples
- Title(参考訳): 背景サンプル処理による開語彙オブジェクト検出の高速化
- Authors: Ruizhe Zeng, Lu Zhang, Xu Yang, Zhiyong Liu,
- Abstract要約: 背景サンプルの処理におけるCLIPの限界に対処する新しい手法を提案する。
本稿では,部分的領域を前景として誤分類する問題に対処するために,部分的オブジェクト抑圧(POS)を導入する。
提案手法は,様々な開語彙検出器の性能向上を実現することができる。
- 参考スコア(独自算出の注目度): 9.07525578809556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-vocabulary object detection is the task of accurately detecting objects from a candidate vocabulary list that includes both base and novel categories. Currently, numerous open-vocabulary detectors have achieved success by leveraging the impressive zero-shot capabilities of CLIP. However, we observe that CLIP models struggle to effectively handle background images (i.e. images without corresponding labels) due to their language-image learning methodology. This limitation results in suboptimal performance for open-vocabulary detectors that rely on CLIP when processing background samples. In this paper, we propose Background Information Representation for open-vocabulary Detector (BIRDet), a novel approach to address the limitations of CLIP in handling background samples. Specifically, we design Background Information Modeling (BIM) to replace the single, fixed background embedding in mainstream open-vocabulary detectors with dynamic scene information, and prompt it into image-related background representations. This method effectively enhances the ability to classify oversized regions as background. Besides, we introduce Partial Object Suppression (POS), an algorithm that utilizes the ratio of overlap area to address the issue of misclassifying partial regions as foreground. Experiments on OV-COCO and OV-LVIS benchmarks demonstrate that our proposed model is capable of achieving performance enhancements across various open-vocabulary detectors.
- Abstract(参考訳): オープン語彙オブジェクト検出は、ベースと新規の両方のカテゴリを含む候補語彙リストからオブジェクトを正確に検出するタスクである。
現在、多くのオープンボキャブラリ検出器がCLIPの印象的なゼロショット機能を活用して成功している。
しかし,言語画像学習手法により,CLIPモデルは背景画像(ラベルのない画像)を効果的に扱うのに苦労している。
この制限により、バックグラウンドサンプルを処理する際にCLIPに依存するオープン語彙検出器のサブ最適性能が得られる。
本稿では,背景サンプル処理におけるCLIPの限界に対処する新しい手法であるオープン語彙検出器(BIRDet)の背景情報表現を提案する。
具体的には、背景情報モデリング(BIM)を設計し、メインストリームのオープン語彙検出器に埋め込んだ固定背景を動的シーン情報に置き換え、画像関連背景表現に誘導する。
この方法は、大小の領域を背景として分類する能力を効果的に向上させる。
さらに、重なり合う領域の比率を利用して、部分領域を前景として誤分類する問題に対処するアルゴリズムであるpartial Object Suppression (POS)を導入する。
OV-COCO と OV-LVIS のベンチマーク実験により,提案手法は様々な開語彙検出器の性能向上を実現することができることを示した。
関連論文リスト
- Fine-Grained Open-Vocabulary Object Recognition via User-Guided Segmentation [1.590984668118904]
FOCUS: ユーザガイドによるきめ細かいオープン語彙オブジェクト認識。
FOCUSと呼ばれる新しい基礎モデルに基づく検出手法を提案する。
論文 参考訳(メタデータ) (2024-11-23T18:13:27Z) - MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Semantic Segmentation [33.67313662538398]
オープン語彙セマンティックセマンティックセグメンテーションのためのマルチレゾリューション・トレーニング・フレームワークを提案する。
MROVSegはスライディングウィンドウを使用して高解像度の入力を均一なパッチにスライスし、それぞれがよく訓練されたイメージエンコーダの入力サイズと一致する。
オープン語彙セマンティックセグメンテーションベンチマークにおけるMROVSegの優位性を実証する。
論文 参考訳(メタデータ) (2024-08-27T04:45:53Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T17:32:26Z) - LOGO: Video Text Spotting with Language Collaboration and Glyph Perception Model [20.007650672107566]
ビデオテキストスポッティング(VTS)は、ビデオ内のテキストインスタンスを同時にローカライズ、認識、追跡することを目的としている。
最近の方法では、最先端の画像テキストスポッターのゼロショット結果を直接追跡する。
特定のデータセット上の微調整トランスフォーマーベースのテキストスポッターにより、パフォーマンスが向上する可能性がある。
論文 参考訳(メタデータ) (2024-05-29T15:35:09Z) - DetCLIPv3: Towards Versatile Generative Open-vocabulary Object Detection [111.68263493302499]
DetCLIPv3は、オープンボキャブラリオブジェクト検出と階層ラベルの両方で優れた高性能検出器である。
DetCLIPv3は,1)Versatileモデルアーキテクチャ,2)高情報密度データ,3)効率的なトレーニング戦略の3つのコア設計によって特徴付けられる。
DetCLIPv3は、GLIPv2, GroundingDINO, DetCLIPv2をそれぞれ18.0/19.6/6 APで上回り、優れたオープン語彙検出性能を示す。
論文 参考訳(メタデータ) (2024-04-14T11:01:44Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
OVCOS(Open-vocabulary camouflaged Object segmentation)を導入した。
我々は11,483個の手選択画像とそれに対応するオブジェクトクラスを含む大規模複合シーンデータセット(textbfOVCamo)を構築した。
クラスセマンティック知識の指導とエッジ情報と深度情報からの視覚構造的手がかりの補足を統合することにより、提案手法は効率よくカモフラージュされたオブジェクトを捕捉できる。
論文 参考訳(メタデータ) (2023-11-19T06:00:39Z) - DisCLIP: Open-Vocabulary Referring Expression Generation [37.789850573203694]
大規模ビジュアル・セマンティック・モデルであるCLIPを用いてLCMを誘導し、画像中のターゲット概念の文脈記述を生成する。
本研究では、シーン内の記述対象を正確に識別する受信機モデルの能力を評価することにより、生成されたテキストの品質を測定する。
本結果は,事前学習した視覚意味論モデルを用いて,高品質な文脈記述を生成する可能性を強調した。
論文 参考訳(メタデータ) (2023-05-30T15:13:17Z) - Fine-grained Visual-Text Prompt-Driven Self-Training for Open-Vocabulary
Object Detection [87.39089806069707]
オープン語彙検出(VTP-OVD)のための微粒なビジュアルテキストプロンプト駆動型自己学習パラダイムを提案する。
適応段階では、学習可能なテキストプロンプトを用いて細粒度アライメントを可能とし、補助的なピクセルワイズ予測タスクを解決する。
実験の結果,COCO の未確認クラスでは,31.5% mAP など,オープン語彙オブジェクト検出の最先端性能が得られた。
論文 参考訳(メタデータ) (2022-11-02T03:38:02Z) - Bridging the Gap between Object and Image-level Representations for
Open-Vocabulary Detection [54.96069171726668]
オープンボキャブラリ検出(OVD)で使用される2種類の弱いスーパービジョンには、事前訓練されたCLIPモデルと画像レベルの監視が含まれる。
本稿では,CLIPモデルから言語埋め込みをオブジェクト中心でアライメントすることでこの問題に対処することを提案する。
上記の2つの対物配向戦略の橋渡しを,新しい重み伝達関数を用いて行う。
論文 参考訳(メタデータ) (2022-07-07T17:59:56Z) - Open-Vocabulary DETR with Conditional Matching [86.1530128487077]
OV-DETRは、DETRに基づくオープンボキャブラリ検出器である。
クラス名や模範画像が与えられた任意のオブジェクトを検出できる。
芸術の現在の状態よりも、ささいな改善を達成している。
論文 参考訳(メタデータ) (2022-03-22T16:54:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。