QEFT: Quantization for Efficient Fine-Tuning of LLMs
- URL: http://arxiv.org/abs/2410.08661v1
- Date: Fri, 11 Oct 2024 09:39:33 GMT
- Title: QEFT: Quantization for Efficient Fine-Tuning of LLMs
- Authors: Changhun Lee, Jun-gyu Jin, Younghyun Cho, Eunhyeok Park,
- Abstract summary: We propose a new technique called Quantization for Efficient Fine-Tuning (QEFT)
QEFT accelerates both inference and fine-tuning, is supported by robust theoretical foundations, and maintains good hardware compatibility.
Our experiments demonstrate that QEFT matches the quality and versatility of full-precision parameter-efficient fine-tuning.
- Score: 9.446971590056945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid growth in the use of fine-tuning for large language models (LLMs), optimizing fine-tuning while keeping inference efficient has become highly important. However, this is a challenging task as it requires improvements in all aspects, including inference speed, fine-tuning speed, memory consumption, and, most importantly, model quality. Previous studies have attempted to achieve this by combining quantization with fine-tuning, but they have failed to enhance all four aspects simultaneously. In this study, we propose a new lightweight technique called Quantization for Efficient Fine-Tuning (QEFT). QEFT accelerates both inference and fine-tuning, is supported by robust theoretical foundations, offers high flexibility, and maintains good hardware compatibility. Our extensive experiments demonstrate that QEFT matches the quality and versatility of full-precision parameter-efficient fine-tuning, while using fewer resources. Our code is available at https://github.com/xvyaward/qeft.
Related papers
- Layer-wise Importance Matters: Less Memory for Better Performance in Parameter-efficient Fine-tuning of Large Language Models [19.163639128631534]
Importance-aware Sparse Tuning (IST) is a plug-and-play technique compatible with various PEFT methods that operate on a per-layer basis.
IST dynamically updates selected layers in PEFT modules, leading to reduced memory demands.
arXiv Detail & Related papers (2024-10-15T16:53:26Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Context-PEFT: Efficient Multi-Modal, Multi-Task Fine-Tuning [12.648711621637663]
This paper introduces a novel.
COCO-Efficient Fine-Tuning (PEFT) framework for multi-modal, multi-task transfer learning with pre-trained language models.
We propose Context-PEFT, which learns different groups of adaptor parameters based on the token's domain.
Our method is evaluated on the captioning task, where it outperforms full fine-tuning under similar data constraints.
arXiv Detail & Related papers (2023-12-14T13:00:24Z) - Fast Trainable Projection for Robust Fine-Tuning [36.51660287722338]
Robust fine-tuning aims to achieve competitive in-distribution (ID) performance.
Projection-based fine-tuning has been successfully used in robust fine-tuning.
Fast Trainable Projection is a new projection-based fine-tuning algorithm.
arXiv Detail & Related papers (2023-10-29T22:52:43Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - QFT: Quantized Full-parameter Tuning of LLMs with Affordable Resources [37.265708531464746]
Large Language Models (LLMs) have showcased remarkable impacts across a wide spectrum of natural language processing tasks.
Fine-tuning these pre-trained models on downstream datasets provides further significant performance gains, but this process has been challenging due to its extraordinary resource requirements.
We propose QFT, a novel Quantized Full- parameter Tuning framework for LLMs that enables memory-efficient fine-tuning without harming performance.
arXiv Detail & Related papers (2023-10-11T02:47:40Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
Post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches to compress and accelerate diffusion models.
We introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency.
Our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency.
arXiv Detail & Related papers (2023-10-05T02:51:53Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - AutoPEFT: Automatic Configuration Search for Parameter-Efficient
Fine-Tuning [77.61565726647784]
Motivated by advances in neural architecture search, we propose AutoPEFT for automatic PEFT configuration selection.
We show that AutoPEFT-discovered configurations significantly outperform existing PEFT methods and are on par or better than FFT without incurring substantial training efficiency costs.
arXiv Detail & Related papers (2023-01-28T08:51:23Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
We propose an instantiation--amortized auto-tuning (AT2) to speed up tuning of machine learning models.
We conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2)
arXiv Detail & Related papers (2021-06-17T00:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.