On the impact of key design aspects in simulated Hybrid Quantum Neural Networks for Earth Observation
- URL: http://arxiv.org/abs/2410.08677v1
- Date: Fri, 11 Oct 2024 10:04:29 GMT
- Title: On the impact of key design aspects in simulated Hybrid Quantum Neural Networks for Earth Observation
- Authors: Lorenzo Papa, Alessandro Sebastianelli, Gabriele Meoni, Irene Amerini,
- Abstract summary: This research investigates how different quantum libraries behave when training hybrid quantum models.
We also examine the benefits of hybrid quantum attention-based models in Earth Observation applications.
- Score: 46.271239108950816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has introduced novel perspectives for tackling and improving machine learning tasks. Moreover, the integration of quantum technologies together with well-known deep learning (DL) architectures has emerged as a potential research trend gaining attraction across various domains, such as Earth Observation (EO) and many other research fields. However, prior related works in EO literature have mainly focused on convolutional architectural advancements, leaving several essential topics unexplored. Consequently, this research investigates through three cases of study fundamental aspects of hybrid quantum machine models for EO tasks aiming to provide a solid groundwork for future research studies towards more adequate simulations and looking at the post-NISQ era. More in detail, we firstly (1) investigate how different quantum libraries behave when training hybrid quantum models, assessing their computational efficiency and effectiveness. Secondly, (2) we analyze the stability/sensitivity to initialization values (i.e., seed values) in both traditional model and quantum-enhanced counterparts. Finally, (3) we explore the benefits of hybrid quantum attention-based models in EO applications, examining how integrating quantum circuits into ViTs can improve model performance.
Related papers
- Quantum Neural Network applications to Protein Binding Affinity Predictions [0.0]
Quantum neural networks (QNNs) have gained traction as a research focus.<n>This study proposes thirty variations of multilayer perceptron-based quantum neural networks.<n>Results indicate that the quantum models achieved approximately 20% higher accuracy on one unseen dataset.
arXiv Detail & Related papers (2025-08-05T13:47:15Z) - A Survey of Quantum Transformers: Architectures, Challenges and Outlooks [82.4736481748099]
Quantum Transformers integrate the representational power of classical Transformers with the computational advantages of quantum computing.<n>Since 2022, research in this area has rapidly expanded, giving rise to diverse technical paradigms and early applications.<n>This paper presents the first comprehensive, systematic, and in-depth survey of quantum Transformer models.
arXiv Detail & Related papers (2025-04-04T05:40:18Z) - Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
Quantum Machine Learning represents a paradigm shift at the intersection of Quantum Computing and Machine Learning.
The field faces significant challenges, including hardware constraints, noise, and limited qubit coherence.
This survey aims to provide a foundational resource for advancing Quantum Machine Learning toward practical, real-world applications.
arXiv Detail & Related papers (2025-01-16T13:25:49Z) - Unsupervised Quantum Anomaly Detection on Noisy Quantum Processors [1.2325897339438878]
We provide a systematic analysis of the generalization properties of the One-Class Support Vector Machine (OCSVM) algorithm.
Results were theoretically simulated and experimentally validated on trapped-ion and superconducting quantum processors.
arXiv Detail & Related papers (2024-11-25T22:42:38Z) - Quantum Frontiers in High Energy Physics [9.663373038813354]
We will discuss the potential of quantum devices in detecting subtle effects indicative of new physics beyond the Standard Model.
We will also discuss the transformative role of quantum algorithms and large-scale quantum computers in studying real-time non-perturbative dynamics in the early universe and at colliders.
arXiv Detail & Related papers (2024-11-18T05:41:08Z) - Quantum-inspired activation functions and quantum Chebyshev-polynomial network [6.09437748873686]
We investigate functional expressibility of quantum circuits integrated within a convolutional neural network (CNN)
We develop a hybrid quantum Chebyshev-polynomial network (QCPN) based on the properties of quantum activation functions.
Our findings suggest that quantum-inspired activation functions can reduce model depth while maintaining high learning capability.
arXiv Detail & Related papers (2024-04-08T23:08:38Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Opportunities in Quantum Reservoir Computing and Extreme Learning
Machines [0.0]
Quantum reservoir computing (QRC) and quantum extreme learning machines (QELM) are two emerging approaches.
They exploit the quantumness of physical systems combined with an easy training strategy, achieving an excellent performance.
arXiv Detail & Related papers (2021-02-23T18:05:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.