論文の概要: Losing dimensions: Geometric memorization in generative diffusion
- arxiv url: http://arxiv.org/abs/2410.08727v1
- Date: Fri, 11 Oct 2024 11:31:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:15:28.868067
- Title: Losing dimensions: Geometric memorization in generative diffusion
- Title(参考訳): 損失次元:遺伝子拡散における幾何学的記憶
- Authors: Beatrice Achilli, Enrico Ventura, Gianluigi Silvestri, Bao Pham, Gabriel Raya, Dmitry Krotov, Carlo Lucibello, Luca Ambrogioni,
- Abstract要約: 生成拡散における記憶理論を多様体支援データに拡張する。
理論的および実験的な結果から,異なる臨界時間における記憶効果とデータセットサイズにより,異なる部分空間が失われることが示唆された。
おそらく反故意に、ある条件下では、高い分散の部分空間は、暗記効果によって最初に失われることが分かる。
- 参考スコア(独自算出の注目度): 10.573546162574235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative diffusion processes are state-of-the-art machine learning models deeply connected with fundamental concepts in statistical physics. Depending on the dataset size and the capacity of the network, their behavior is known to transition from an associative memory regime to a generalization phase in a phenomenon that has been described as a glassy phase transition. Here, using statistical physics techniques, we extend the theory of memorization in generative diffusion to manifold-supported data. Our theoretical and experimental findings indicate that different tangent subspaces are lost due to memorization effects at different critical times and dataset sizes, which depend on the local variance of the data along their directions. Perhaps counterintuitively, we find that, under some conditions, subspaces of higher variance are lost first due to memorization effects. This leads to a selective loss of dimensionality where some prominent features of the data are memorized without a full collapse on any individual training point. We validate our theory with a comprehensive set of experiments on networks trained both in image datasets and on linear manifolds, which result in a remarkable qualitative agreement with the theoretical predictions.
- Abstract(参考訳): 生成拡散過程は、統計物理学の基本概念と深く結びついている最先端の機械学習モデルである。
データセットのサイズやネットワークの容量によって、それらの挙動は、ガラス相転移と呼ばれる現象において、連想記憶状態から一般化フェーズへ遷移することが知られている。
ここでは、統計物理学の手法を用いて、生成拡散における記憶理論を多様体支援データに拡張する。
理論的および実験的な結果から,異なる臨界時間における記憶効果と,その方向に沿ったデータの局所的分散に依存するデータセットサイズにより,異なる接部分空間が失われることが示唆された。
おそらく反故意に、ある条件下では、高い分散の部分空間は、暗記効果によって最初に失われることが分かる。
これは、データの顕著な特徴が個々のトレーニングポイントで完全に崩壊することなく記憶されるような、次元性の選択的損失につながる。
我々は、画像データセットと線形多様体の両方で訓練されたネットワーク上での網羅的な実験により、我々の理論を検証し、理論的予測と顕著な定性的な一致をもたらす。
関連論文リスト
- Cross-Entropy Is All You Need To Invert the Data Generating Process [29.94396019742267]
経験的現象は、教師付きモデルが線形な方法で変化の解釈可能な要因を学習できることを示唆している。
近年の自己教師型学習の進歩により,データ生成過程を反転させることで潜在構造を復元できることが示されている。
標準分類タスクにおいても,モデルが線形変換までの変動の基底構造因子の表現を学習することが証明された。
論文 参考訳(メタデータ) (2024-10-29T09:03:57Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
空間の次元とデータ数が大きい体制における生成拡散モデルについて検討する。
本研究は, 逆向き発生拡散過程における3つの異なる動的状態を明らかにするものである。
崩壊時間の次元とデータ数への依存性は、拡散モデルにおける次元の呪いの徹底的な評価を与える。
論文 参考訳(メタデータ) (2024-02-28T17:19:26Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - On Memorization in Diffusion Models [46.656797890144105]
より小さなデータセットでは記憶の挙動が生じる傾向があることを示す。
我々は、有効モデル記憶(EMM)の観点から、影響因子がこれらの記憶行動に与える影響を定量化する。
本研究は,拡散モデル利用者にとって実用的意義を持ち,深部生成モデルの理論研究の手がかりを提供する。
論文 参考訳(メタデータ) (2023-10-04T09:04:20Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
一般化誤差の「二重降下」現象について検討する。
二重降下は、異なるスケールで学習される異なる特徴に起因する可能性がある。
論文 参考訳(メタデータ) (2021-12-06T18:17:08Z) - On the geometry of generalization and memorization in deep neural
networks [15.250162344382051]
本研究では,深層ネットワークにおいて,いつ,どこで暗記が起こるかという構造について検討する。
すべてのレイヤは、機能を共有する例から優先的に学び、この振る舞いを一般化のパフォーマンスにリンクする。
我々は,物体の半径と寸法を減少させるため,より深い層に暗記が顕著に起こることを見出した。
論文 参考訳(メタデータ) (2021-05-30T19:07:33Z) - More data or more parameters? Investigating the effect of data structure
on generalization [17.249712222764085]
データの特性は、トレーニング例の数とトレーニングパラメータの数の関数としてテストエラーに影響を与えます。
ラベル内のノイズや入力データの強い異方性がテストエラーと同じような役割を担っていることを示す。
論文 参考訳(メタデータ) (2021-03-09T16:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。