論文の概要: Minimum-Norm Interpolation Under Covariate Shift
- arxiv url: http://arxiv.org/abs/2404.00522v2
- Date: Wed, 17 Jul 2024 08:55:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:19:21.774799
- Title: Minimum-Norm Interpolation Under Covariate Shift
- Title(参考訳): 共変量シフトによる最小ノルム補間
- Authors: Neil Mallinar, Austin Zane, Spencer Frei, Bin Yu,
- Abstract要約: 高次元線形回帰に関する非分布研究は、テキシトベニンオーバーフィッティング(textitbenign overfitting)として知られる現象の同定につながった。
本稿では,移動学習環境における線形補間器の非漸近的過剰リスク境界を初めて証明する。
- 参考スコア(独自算出の注目度): 14.863831433459902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning is a critical part of real-world machine learning deployments and has been extensively studied in experimental works with overparameterized neural networks. However, even in the simplest setting of linear regression a notable gap still exists in the theoretical understanding of transfer learning. In-distribution research on high-dimensional linear regression has led to the identification of a phenomenon known as \textit{benign overfitting}, in which linear interpolators overfit to noisy training labels and yet still generalize well. This behavior occurs under specific conditions on the source covariance matrix and input data dimension. Therefore, it is natural to wonder how such high-dimensional linear models behave under transfer learning. We prove the first non-asymptotic excess risk bounds for benignly-overfit linear interpolators in the transfer learning setting. From our analysis, we propose a taxonomy of \textit{beneficial} and \textit{malignant} covariate shifts based on the degree of overparameterization. We follow our analysis with empirical studies that show these beneficial and malignant covariate shifts for linear interpolators on real image data, and for fully-connected neural networks in settings where the input data dimension is larger than the training sample size.
- Abstract(参考訳): トランスファーラーニングは、現実の機械学習デプロイメントにおいて重要な部分であり、過度にパラメータ化されたニューラルネットワークを用いた実験的研究で広く研究されている。
しかし、線形回帰の最も単純な設定においても、伝達学習の理論的理解には注目すべきギャップが残っている。
高次元線形回帰に関する分布的研究は、線形補間器がノイズの多い訓練ラベルに過度に適合し、しかしなおもよく一般化している「textit{benign overfitting」と呼ばれる現象を同定した。
この挙動は、ソース共分散行列と入力データ次元に関する特定の条件下で起こる。
したがって、そのような高次元線形モデルが転写学習の下でどのように振る舞うのか疑問に思うのは自然である。
本稿では,移動学習環境における線形補間器の非漸近的過剰リスク境界を初めて証明する。
そこで本研究では,過パラメータ化の度合いに基づいて,<textit{beneficial}と<textit{malignant}共変量シフトの分類法を提案する。
実画像データ上での線形補間器と、入力データ次元がトレーニングサンプルサイズよりも大きい環境での完全連結ニューラルネットワークに対して、これらの有益で悪性な共変量シフトを示す実験的な研究に追従する。
関連論文リスト
- Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
本稿では,正規直交深部線形ニューラルネットワークの学習のための収束解析について述べる。
その結果、隠れた層の増加が収束速度にどのように影響するかが明らかになった。
論文 参考訳(メタデータ) (2023-11-24T18:46:54Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
近似グラフ自己同型を見つけるためのアルゴリズムフレームワークを開発する。
重み付きグラフにおける近似自己同型を見つけるために、このフレームワークをどのように利用できるかについて議論する。
論文 参考訳(メタデータ) (2023-07-24T17:03:28Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations [0.0]
本研究では,不確かさが勾配推定に及ぼす影響について検討した。
一般の過度にパラメータ化された定式化は、損失関数が最小化される集合の外側に配置されるスプリアス平衡の集合を導入することを示す。
論文 参考訳(メタデータ) (2023-05-17T02:26:34Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
本稿では,ガウス的特徴を持つ線形回帰モデルの下で,過剰適合型メタラーニングの性能について検討する。
シングルタスク線形回帰には存在しない新しい興味深い性質が見つかる。
本分析は,各訓練課題における基礎的真理のノイズや多様性・変動が大きい場合には,良心過剰がより重要かつ容易に観察できることを示唆する。
論文 参考訳(メタデータ) (2023-04-09T20:36:13Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
勾配降下による一般化を訓練した2層ニューラルネットワークの一般化誤差を考察する。
ニューラルネットワークはトレーニングエラーをゼロにし、ノイズの多いトレーニングラベルを完璧に適合させ、同時に最小限のテストエラーを達成できる。
線形あるいはカーネルベースの予測器を必要とする良性オーバーフィッティングに関するこれまでの研究とは対照的に、我々の分析はモデルと学習力学の両方が基本的に非線形であるような環境で成り立っている。
論文 参考訳(メタデータ) (2022-02-11T23:04:00Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
線形分離可能なデータに対して、ロジスティックあるいは指数損失の深い線形ネットワークを訓練すると、重みは1$の行列に収束する。
非線形ReLU活性化フィードフォワードネットワークに対して、低ランク現象が厳格に証明されたのはこれが初めてである。
我々の証明は、あるパラメータの方向収束の下で重みが一定である多重線型関数と別のReLUネットワークへのネットワークの特定の分解に依存している。
論文 参考訳(メタデータ) (2022-01-28T07:31:19Z) - Harmless interpolation in regression and classification with structured
features [21.064512161584872]
過度にパラメータ化されたニューラルネットワークは、ノイズの多いトレーニングデータに完全に適合するが、テストデータではうまく一般化する。
再生カーネルヒルベルト空間における上界回帰と分類リスクの一般かつ柔軟な枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-09T15:12:26Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - Near-Optimal Linear Regression under Distribution Shift [63.87137348308034]
線形ミニマックス推定器は、様々なソース/ターゲット分布に対する非線形推定器の中でも、ミニマックスリスクの絶対定数内にあることを示す。
論文 参考訳(メタデータ) (2021-06-23T00:52:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。