論文の概要: Zero-Shot Offline Imitation Learning via Optimal Transport
- arxiv url: http://arxiv.org/abs/2410.08751v1
- Date: Fri, 11 Oct 2024 12:10:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:15:28.786080
- Title: Zero-Shot Offline Imitation Learning via Optimal Transport
- Title(参考訳): 最適輸送によるゼロショットオフライン模倣学習
- Authors: Thomas Rupf, Marco Bagatella, Nico Gürtler, Jonas Frey, Georg Martius,
- Abstract要約: ゼロショットの模倣学習アルゴリズムは、テスト時にたった1つのデモから、目に見えない振る舞いを再現する。
既存の実践的なアプローチでは、専門家のデモンストレーションを一連の目標と見なし、ハイレベルなゴールセレクタと低レベルなゴール条件のポリシーで模倣を可能にする。
そこで本研究では,模倣学習に固有の占領目標を直接最適化することにより,この問題を緩和する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 21.548195072895517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot imitation learning algorithms hold the promise of reproducing unseen behavior from as little as a single demonstration at test time. Existing practical approaches view the expert demonstration as a sequence of goals, enabling imitation with a high-level goal selector, and a low-level goal-conditioned policy. However, this framework can suffer from myopic behavior: the agent's immediate actions towards achieving individual goals may undermine long-term objectives. We introduce a novel method that mitigates this issue by directly optimizing the occupancy matching objective that is intrinsic to imitation learning. We propose to lift a goal-conditioned value function to a distance between occupancies, which are in turn approximated via a learned world model. The resulting method can learn from offline, suboptimal data, and is capable of non-myopic, zero-shot imitation, as we demonstrate in complex, continuous benchmarks.
- Abstract(参考訳): ゼロショットの模倣学習アルゴリズムは、テスト時にたった1つのデモから、目に見えない振る舞いを再現するという約束を持っている。
既存の実践的なアプローチでは、専門家のデモンストレーションを一連の目標と見なし、ハイレベルなゴールセレクタと低レベルなゴール条件のポリシーで模倣を可能にする。
しかし、この枠組みは、個々の目標を達成するためのエージェントの即時行動は、長期的な目的を損なう可能性がある。
そこで本研究では,模倣学習に固有の占領目標を直接最適化することにより,この問題を緩和する新しい手法を提案する。
本稿では,目標条件付き値関数を,学習世界モデルを用いて近似した占領地間距離に引き上げることを提案する。
得られた手法は、オフラインで最適でないデータから学習することができ、複雑な連続ベンチマークで示すように、非ミオピックでゼロショットの模倣が可能である。
関連論文リスト
- HIQL: Offline Goal-Conditioned RL with Latent States as Actions [81.67963770528753]
オフラインデータからゴール条件付きRLの階層的アルゴリズムを提案する。
この階層的な分解によって、推定値関数のノイズに頑健になることを示す。
提案手法は,従来の手法を巧みに操り,高次元画像観察にスケールできるとともに,アクションフリーなデータを容易に利用することができる。
論文 参考訳(メタデータ) (2023-07-22T00:17:36Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Understanding Hindsight Goal Relabeling Requires Rethinking Divergence
Minimization [10.854471763126117]
マルチゴール強化学習(RL)の基礎技術として,隠れたゴールレバーベリングが注目されている。
そこで本研究では,このような関係を説明する目標達成のための統一的な目標を策定する。
近年のゴール条件付き行動クローニングの進歩にもかかわらず、マルチゴールQ-ラーニングは依然としてBCライクな手法より優れていることが判明した。
論文 参考訳(メタデータ) (2022-09-26T22:00:27Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
本稿では,将来期待される新しい自由エネルギーを最小化するアクティブ推論エージェントを提案する。
我々のモデルは、非常に高いサンプル効率でスパース・リワード問題を解くことができる。
また、複雑な目的の表現を単純化する報奨関数から事前モデルを近似する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-04T10:03:36Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
政策状態の訪問分布と目標分布とのワッサースタイン-1距離が強化学習タスクに有効に活用できるかどうかを検討する。
我々のアプローチは、AIM (Adversarial Intrinsic Motivation) と呼ばれ、このワッサーシュタイン-1距離をその双対目的を通して推定し、補足報酬関数を計算する。
論文 参考訳(メタデータ) (2021-05-27T17:51:34Z) - Provable Representation Learning for Imitation with Contrastive Fourier
Features [27.74988221252854]
オフライン体験データセットを用いて低次元の状態表現を学習する。
主要な課題は、未知のターゲットポリシー自体が低次元の振る舞いを示さないことである。
我々は、目標ポリシーと最大様態で訓練された低次元ポリシーとの性能差を上限とする表現学習目標を導出する。
論文 参考訳(メタデータ) (2021-05-26T00:31:30Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。