Unveiling Molecular Secrets: An LLM-Augmented Linear Model for Explainable and Calibratable Molecular Property Prediction
- URL: http://arxiv.org/abs/2410.08829v1
- Date: Fri, 11 Oct 2024 14:07:57 GMT
- Title: Unveiling Molecular Secrets: An LLM-Augmented Linear Model for Explainable and Calibratable Molecular Property Prediction
- Authors: Zhuoran Li, Xu Sun, Wanyu Lin, Jiannong Cao,
- Abstract summary: This work proposes a novel framework, called MoleX, to build a simple yet powerful linear model for accurate molecular property prediction.
The core of MoleX is to model complicated molecular structure-property relationships using a simple linear model, augmented by LLM knowledge and a crafted calibration strategy.
Extensive experiments demonstrate that MoleX outperforms existing methods in molecular property prediction, establishing a new milestone in predictive performance, explainability, and efficiency.
- Score: 26.25787628872043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable molecular property prediction is essential for various scientific fields, such as drug discovery and material science. Despite delivering intrinsic explainability, linear models struggle with capturing complex, non-linear patterns. Large language models (LLMs), on the other hand, yield accurate predictions through powerful inference capabilities yet fail to provide chemically meaningful explanations for their predictions. This work proposes a novel framework, called MoleX, which leverages LLM knowledge to build a simple yet powerful linear model for accurate molecular property prediction with faithful explanations. The core of MoleX is to model complicated molecular structure-property relationships using a simple linear model, augmented by LLM knowledge and a crafted calibration strategy. Specifically, to extract the maximum amount of task-relevant knowledge from LLM embeddings, we employ information bottleneck-inspired fine-tuning and sparsity-inducing dimensionality reduction. These informative embeddings are then used to fit a linear model for explainable inference. Moreover, we introduce residual calibration to address prediction errors stemming from linear models' insufficient expressiveness of complex LLM embeddings, thus recovering the LLM's predictive power and boosting overall accuracy. Theoretically, we provide a mathematical foundation to justify MoleX's explainability. Extensive experiments demonstrate that MoleX outperforms existing methods in molecular property prediction, establishing a new milestone in predictive performance, explainability, and efficiency. In particular, MoleX enables CPU inference and accelerates large-scale dataset processing, achieving comparable performance 300x faster with 100,000 fewer parameters than LLMs. Additionally, the calibration improves model performance by up to 12.7% without compromising explainability.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
We introduce a Multi-Modal Fusion (MMF) framework that harnesses the analytical prowess of Graph Neural Networks (GNNs) and the linguistic generative and predictive abilities of Large Language Models (LLMs)
Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting.
arXiv Detail & Related papers (2024-08-27T11:10:39Z) - LLM and GNN are Complementary: Distilling LLM for Multimodal Graph Learning [26.980622926162933]
We present an innovative framework that utilizes multimodal molecular data to extract insights from Large Language Models (LLMs)
We introduce GALLON, a framework that synergizes the capabilities of LLMs and Graph Neural Networks (GNNs) by distilling multimodal knowledge into a unified Multilayer Perceptron (MLP)
arXiv Detail & Related papers (2024-06-03T06:33:51Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Can Large Language Models Empower Molecular Property Prediction? [16.5246941211725]
Molecular property prediction has gained significant attention due to its transformative potential in scientific disciplines.
Recently, the rapid development of Large Language Models (LLMs) has revolutionized the field of NLP.
In this work, we advance towards this objective through two perspectives: zero/few-shot molecular classification, and using the new explanations generated by LLMs as representations of molecules.
arXiv Detail & Related papers (2023-07-14T16:06:42Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Prediction of transport property via machine learning molecular
movements [1.0554048699217666]
We present a simple supervised machine learning method to predict the transport properties of materials.
This method was applied to predict the viscosity of lubricant molecules in confinement with shear flow.
We revealed two types of molecular mechanisms that contribute to low viscosity.
arXiv Detail & Related papers (2022-03-07T02:28:07Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.