A physics-guided neural network for flooding area detection using SAR imagery and local river gauge observations
- URL: http://arxiv.org/abs/2410.08837v1
- Date: Fri, 11 Oct 2024 14:13:06 GMT
- Title: A physics-guided neural network for flooding area detection using SAR imagery and local river gauge observations
- Authors: Monika Gierszewska, Tomasz Berezowski,
- Abstract summary: We propose a physics-guided neural network for flooding area detection.
Our approach takes as input data the Sentinel 1 time-series images and the water elevations in the river assigned to each image.
The effectiveness of our method is evaluated in five different study areas by comparing the predicted water maps with reference water maps obtained from digital terrain models and optical satellite images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The flooding extent area in a river valley is related to river gauge observations. The higher the water elevation, the larger the flooding area. Due to synthetic aperture radar\textquoteright s (SAR) capabilities to penetrate through clouds, radar images have been commonly used to estimate flooding extent area with various methods, from simple thresholding to deep learning models. In this study, we propose a physics-guided neural network for flooding area detection. Our approach takes as input data the Sentinel 1 time-series images and the water elevations in the river assigned to each image. We apply the Pearson correlation coefficient between the predicted sum of water extent areas and the local water level observations of river water elevations as the loss function. The effectiveness of our method is evaluated in five different study areas by comparing the predicted water maps with reference water maps obtained from digital terrain models and optical satellite images. The highest Intersection over Union (IoU) score achieved by our models was 0.89 for the water class and 0.96 for the non-water class. Additionally, we compared the results with other unsupervised methods. The proposed neural network provided a higher IoU than the other methods, especially for SAR images registered during low water elevation in the river.
Related papers
- TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
Hydrometric prediction of water quantity is useful for a variety of applications, including water management, flood forecasting, and flood control.
We propose atemporal forecasting model that augments the hidden state in Graph Convolution Recurrent Neural Network (GCRN) encoder-decoder.
We present a new benchmark dataset of water flow from a network of Canadian stations on rivers, streams, and lakes.
arXiv Detail & Related papers (2023-12-10T18:23:40Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
We create a labeled known water body extent and flooded area extents during known flooding events covering about 36,000 sq. kilometers of regions within mainland U.S and Bangladesh.
We also leveraged citizen science by open-sourcing the dataset and hosting an open competition based on the dataset to rapidly prototype flood extent detection using community generated models.
We believe the dataset adds to already existing datasets based on Sentinel-1C SAR data and leads to more robust modeling of flood extents.
arXiv Detail & Related papers (2023-11-15T18:49:29Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Estimation of River Water Surface Elevation Using UAV Photogrammetry and
Machine Learning [0.0]
Unmanned aerial vehicle (UAV) photogrammetry allows for the creation of orthophotos and digital surface models (DSMs) of a terrain.
DSMs of water bodies mapped with this technique reveal water surface distortions, preventing the use of photogrammetric data for accurate determination of water surface elevation (WSE)
We propose a new solution in which a convolutional neural network (CNN) is used as a WSE estimator from photogrammetric DSMs and orthophotos.
arXiv Detail & Related papers (2023-06-05T08:20:46Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - A Hybrid Deep Learning Model for Predictive Flood Warning and Situation
Awareness using Channel Network Sensors Data [0.965964228590342]
The study used Harris County, Texas as the testbed, and obtained channel sensor data from three historical flood events.
The model is then tested in predicting the 2019 Imelda flood in Houston and the results show an excellent match with the empirical flood.
arXiv Detail & Related papers (2020-06-15T17:25:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.