Learning to Stop: Deep Learning for Mean Field Optimal Stopping
- URL: http://arxiv.org/abs/2410.08850v2
- Date: Mon, 09 Jun 2025 16:11:54 GMT
- Title: Learning to Stop: Deep Learning for Mean Field Optimal Stopping
- Authors: Lorenzo Magnino, Yuchen Zhu, Mathieu Laurière,
- Abstract summary: Optimal stopping is a fundamental problem in optimization with applications in risk management, finance, robotics, and machine learning.<n>We extend the standard framework to a multi-agent setting, named multi-agent optimal stopping (MAOS), where agents cooperate to make optimal stopping decisions in a finite-space, discrete-time environment.<n>Since solving MAOS becomes computationally prohibitive as the number of agents is very large, we study the mean-field optimal stopping problem, obtained as the number of agents tends to infinity.
- Score: 3.350071725971209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal stopping is a fundamental problem in optimization with applications in risk management, finance, robotics, and machine learning. We extend the standard framework to a multi-agent setting, named multi-agent optimal stopping (MAOS), where agents cooperate to make optimal stopping decisions in a finite-space, discrete-time environment. Since solving MAOS becomes computationally prohibitive as the number of agents is very large, we study the mean-field optimal stopping (MFOS) problem, obtained as the number of agents tends to infinity. We establish that MFOS provides a good approximation to MAOS and prove a dynamic programming principle (DPP) based on mean-field control theory. We then propose two deep learning approaches: one that learns optimal stopping decisions by simulating full trajectories and another that leverages the DPP to compute the value function and to learn the optimal stopping rule using backward induction. Both methods train neural networks to approximate optimal stopping policies. We demonstrate the effectiveness and the scalability of our work through numerical experiments on 6 different problems in spatial dimension up to 300. To the best of our knowledge, this is the first work to formalize and computationally solve MFOS in discrete time and finite space, opening new directions for scalable MAOS methods.
Related papers
- Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Tackling Decision Processes with Non-Cumulative Objectives using Reinforcement Learning [0.0]
We introduce a general mapping of non-cumulative Markov decision processes to standard MDPs.<n>This allows all techniques developed to find optimal policies for MDPs to be directly applied to the larger class of NCMDPs.<n>We show applications in a diverse set of tasks, including classical control, portfolio optimization in finance, and discrete optimization problems.
arXiv Detail & Related papers (2024-05-22T13:01:37Z) - Analysing the Sample Complexity of Opponent Shaping [15.226375898939205]
Learning in general-sum games often yields collectively sub-optimal results.
Early opponent shaping (OS) methods use higher-order derivatives to shape the learning of co-players.
Model-free Opponent Shaping (M-FOS) addresses these by reframing the OS problem as a meta-game.
arXiv Detail & Related papers (2024-02-08T16:17:18Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
Multi-objective optimization seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives.
In practical applications, decision-makers (DMs) will select a single solution that aligns with their preferences to be implemented.
We propose two novel algorithms that efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems.
arXiv Detail & Related papers (2024-01-12T15:55:51Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Multi-Resolution Active Learning of Fourier Neural Operators [33.63483360957646]
We propose Multi-Resolution Active learning of FNO (MRA-FNO), which can dynamically select the input functions and resolutions to lower the data cost as much as possible.
Specifically, we propose a probabilistic multi-resolution FNO and use ensemble Monte-Carlo to develop an effective posterior inference algorithm.
We have shown the advantage of our method in several benchmark operator learning tasks.
arXiv Detail & Related papers (2023-09-29T04:41:27Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Reinforcement Learning with Human Feedback: Learning Dynamic Choices via
Pessimism [91.52263068880484]
We study offline Reinforcement Learning with Human Feedback (RLHF)
We aim to learn the human's underlying reward and the MDP's optimal policy from a set of trajectories induced by human choices.
RLHF is challenging for multiple reasons: large state space but limited human feedback, the bounded rationality of human decisions, and the off-policy distribution shift.
arXiv Detail & Related papers (2023-05-29T01:18:39Z) - Sample-Efficient Multi-Objective Learning via Generalized Policy
Improvement Prioritization [8.836422771217084]
Multi-objective reinforcement learning (MORL) algorithms tackle sequential decision problems where agents may have different preferences.
We introduce a novel algorithm that uses Generalized Policy Improvement (GPI) to define principled, formally-derived prioritization schemes.
We empirically show that our method outperforms state-of-the-art MORL algorithms in challenging multi-objective tasks.
arXiv Detail & Related papers (2023-01-18T20:54:40Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - POMDPs in Continuous Time and Discrete Spaces [28.463792234064805]
We consider the problem of optimal decision making in such discrete state and action space systems under partial observability.
We give a mathematical description of a continuous-time partial observable Markov decision process (POMDP)
We present an approach solving the decision problem offline by learning an approximation of the value function and (ii) an online algorithm which provides a solution in belief space using deep reinforcement learning.
arXiv Detail & Related papers (2020-10-02T14:04:32Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
Some problems have many objectives which lead to a large number of non-dominated solutions.
This paper presents a new algorithm that has been designed to obtain the most significant solutions.
This new algorithm has been applied to the real world application in Unmanned Air Vehicle (UAV) Mission Planning Problem.
arXiv Detail & Related papers (2020-02-20T17:07:08Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.