論文の概要: Prediction by Machine Learning Analysis of Genomic Data Phenotypic Frost Tolerance in Perccottus glenii
- arxiv url: http://arxiv.org/abs/2410.08867v1
- Date: Fri, 11 Oct 2024 14:45:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 21:35:51.498498
- Title: Prediction by Machine Learning Analysis of Genomic Data Phenotypic Frost Tolerance in Perccottus glenii
- Title(参考訳): Perccottus gleniiにおけるゲノム型耐凍性の機械学習解析による予測
- Authors: Lilin Fan, Xuqing Chai, Zhixiong Tian, Yihang Qiao, Zhen Wang, Yifan Zhang,
- Abstract要約: 我々はPerccottus gleniiの遺伝子配列解析に機械学習技術を用いる。
我々はRandom Forest, LightGBM, XGBoost, Decision Treeの4つの分類モデルを構築した。
これらの分類モデルで使用されるデータセットは、National Center for Biotechnology Informationデータベースから抽出された。
- 参考スコア(独自算出の注目度): 7.412214379486083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analysis of the genome sequence of Perccottus glenii, the only fish known to possess freeze tolerance, holds significant importance for understanding how organisms adapt to extreme environments, Traditional biological analysis methods are time-consuming and have limited accuracy, To address these issues, we will employ machine learning techniques to analyze the gene sequences of Perccottus glenii, with Neodontobutis hainanens as a comparative group, Firstly, we have proposed five gene sequence vectorization methods and a method for handling ultra-long gene sequences, We conducted a comparative study on the three vectorization methods: ordinal encoding, One-Hot encoding, and K-mer encoding, to identify the optimal encoding method, Secondly, we constructed four classification models: Random Forest, LightGBM, XGBoost, and Decision Tree, The dataset used by these classification models was extracted from the National Center for Biotechnology Information database, and we vectorized the sequence matrices using the optimal encoding method, K-mer, The Random Forest model, which is the optimal model, achieved a classification accuracy of up to 99, 98 , Lastly, we utilized SHAP values to conduct an interpretable analysis of the optimal classification model, Through ten-fold cross-validation and the AUC metric, we identified the top 10 features that contribute the most to the model's classification accuracy, This demonstrates that machine learning methods can effectively replace traditional manual analysis in identifying genes associated with the freeze tolerance phenotype in Perccottus glenii.
- Abstract(参考訳): 凍結耐性を有する唯一の魚であるPerccottus gleniiのゲノム配列の解析は、生物が極端環境にどのように適応しているかを理解する上で重要な意味を持つ。これらの問題に対処するために、我々は、Perccottus gleniiの遺伝子配列をNeodontobutis hainanensで比較群として分析するために機械学習技術を用いる。まず、我々は5つの遺伝子配列ベクター化方法と超長期遺伝子配列を処理する方法を提案した。オーディナルエンコーディング、ワンホットエンコーディング、K-merエンコーディングという3つのベクター化方法の比較研究を行い、最適なエンコーディング方法を特定するために、オーディナルエンコーディング、ワンホットエンコーディング、K-merエンコーディングという3つのモデルを構築した。
関連論文リスト
- Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization [16.491060073775884]
単一セルゲノミクスにおけるクラスタリングタスクに適用可能な反復的遺伝子パネル選択戦略を提案する。
本手法は、他の遺伝子選択アルゴリズムの結果を統合し、重要な予備的境界を提供する。
強化学習(RL)における探索プロセスの性質と,その連続最適化能力を取り入れた。
論文 参考訳(メタデータ) (2024-06-11T16:21:33Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - DNA Sequence Classification with Compressors [0.0]
本研究は,DNA配列解析に適した圧縮機を用いたパラメータフリー分類法を新たに導入する。
この手法は、精度の観点から現在の最先端と整合するだけでなく、従来の機械学習手法よりもリソース効率の良い代替手段を提供する。
論文 参考訳(メタデータ) (2024-01-25T09:17:19Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Deep metric learning improves lab of origin prediction of genetically
engineered plasmids [63.05016513788047]
遺伝工学の属性(GEA)は、配列-ラブの関連を作る能力である。
本稿では,計量学習に基づいて,最も可能性の高い実験室をランク付けする手法を提案する。
我々は、特定の実験室のプラスミド配列のキーシグネチャを抽出することができ、モデル出力の解釈可能な検査を可能にする。
論文 参考訳(メタデータ) (2021-11-24T16:29:03Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
我々は、GeneBERTと呼ばれる、多モードかつ自己管理的な方法でゲノムデータを事前学習するための、単純かつ効果的なアプローチを提案する。
我々はATAC-seqデータセットで1700万のゲノム配列でモデルを事前訓練する。
論文 参考訳(メタデータ) (2021-10-11T12:48:44Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
本稿では,正規化とアンサンブルのアイデアを組み合わせた高次元二項分類問題に対する新しいアプローチを提案する。
がん,多発性硬化症,乾皮症などの共通疾患を含むいくつかの医学的データセットを用いて,バイオマーカーの予測精度と同定の点で,本手法の優れた性能を実証した。
論文 参考訳(メタデータ) (2021-02-17T05:57:26Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
遺伝子型代入問題に対する機械学習手法であるMycorrhizaを紹介する。
提案アルゴリズムは系統ネットワークを用いて,標本間の進化的関係を符号化する特徴を設計する。
Mycorrhizaは、大きな平均固定指数(FST)を持つデータセットやハーディ・ワインバーグ平衡からの偏差で特に顕著な利得を得る。
論文 参考訳(メタデータ) (2020-10-14T02:36:27Z) - Low-Rank Reorganization via Proportional Hazards Non-negative Matrix
Factorization Unveils Survival Associated Gene Clusters [9.773075235189525]
この研究において、Cox比例ハザードの回帰は生存制約を課すことでNMFと統合される。
ヒト癌遺伝子の発現データを用いて、提案手法は癌遺伝子の重要なクラスターを解明することができる。
発見された遺伝子クラスターは、豊富な生物学的含意を反映し、生存に関連するバイオマーカーの同定に役立つ。
論文 参考訳(メタデータ) (2020-08-09T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。