Bank Loan Prediction Using Machine Learning Techniques
- URL: http://arxiv.org/abs/2410.08886v1
- Date: Fri, 11 Oct 2024 15:01:47 GMT
- Title: Bank Loan Prediction Using Machine Learning Techniques
- Authors: F M Ahosanul Haque, Md. Mahedi Hassan,
- Abstract summary: We have worked on a dataset of 148,670 instances and 37 attributes using machine learning methods.
The best-performing algorithm was AdaBoosting, which achieved an incredible accuracy of 99.99%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Banks are important for the development of economies in any financial ecosystem through consumer and business loans. Lending, however, presents risks; thus, banks have to determine the applicant's financial position to reduce the probabilities of default. A number of banks have currently, therefore, adopted data analytics and state-of-the-art technology to arrive at better decisions in the process. The probability of payback is prescribed by a predictive modeling technique in which machine learning algorithms are applied. In this research project, we will apply several machine learning methods to further improve the accuracy and efficiency of loan approval processes. Our work focuses on the prediction of bank loan approval; we have worked on a dataset of 148,670 instances and 37 attributes using machine learning methods. The target property segregates the loan applications into "Approved" and "Denied" groups. various machine learning techniques have been used, namely, Decision Tree Categorization, AdaBoosting, Random Forest Classifier, SVM, and GaussianNB. Following that, the models were trained and evaluated. Among these, the best-performing algorithm was AdaBoosting, which achieved an incredible accuracy of 99.99%. The results therefore show how ensemble learning works effectively to improve the prediction skills of loan approval decisions. The presented work points to the possibility of achieving extremely accurate and efficient loan prediction models that provide useful insights for applying machine learning to financial domains.
Related papers
- A machine learning workflow to address credit default prediction [0.44943951389724796]
Credit default prediction (CDP) plays a crucial role in assessing the creditworthiness of individuals and businesses.
We propose a workflow-based approach to improve CDP, which refers to the task of assessing the probability that a borrower will default on his or her credit obligations.
arXiv Detail & Related papers (2024-03-06T15:30:41Z) - Inclusive FinTech Lending via Contrastive Learning and Domain Adaptation [9.75150920742607]
FinTech lending has played a significant role in facilitating financial inclusion.
There are concerns about the potentially biased algorithmic decision-making during loan screening.
We propose a new Transformer-based sequential loan screening model with self-supervised contrastive learning and domain adaptation.
arXiv Detail & Related papers (2023-05-10T01:11:35Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Selective Credit Assignment [57.41789233550586]
We describe a unified view on temporal-difference algorithms for selective credit assignment.
We present insights into applying weightings to value-based learning and planning algorithms.
arXiv Detail & Related papers (2022-02-20T00:07:57Z) - Managers versus Machines: Do Algorithms Replicate Human Intuition in
Credit Ratings? [0.0]
We show that it is possible to find machine learning algorithms that can replicate the behavior of the bank managers.
The input to the algorithms consists of a combination of standard financials and soft information available to bank managers.
Our results highlight the effectiveness of machine learning based analytic approaches to banking and the potential challenges to high-skill jobs in the financial sector.
arXiv Detail & Related papers (2022-02-09T01:20:44Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - Learning Models for Actionable Recourse [31.30850378503406]
We propose an algorithm that theoretically guarantees recourse to affected individuals with high probability without sacrificing accuracy.
We demonstrate the efficacy of our approach via extensive experiments on real data.
arXiv Detail & Related papers (2020-11-12T01:15:18Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
arXiv Detail & Related papers (2020-05-09T01:32:03Z) - Predicting Bank Loan Default with Extreme Gradient Boosting [0.0]
We use an Extreme Gradient Boosting algorithm called XGBoost for loan default prediction.
The prediction is based on a loan data from a leading bank taking into consideration data sets from both the loan application and the demographic of the applicant.
arXiv Detail & Related papers (2020-01-18T18:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.