Lifted Coefficient of Determination: Fast model-free prediction intervals and likelihood-free model comparison
- URL: http://arxiv.org/abs/2410.08958v1
- Date: Fri, 11 Oct 2024 16:27:31 GMT
- Title: Lifted Coefficient of Determination: Fast model-free prediction intervals and likelihood-free model comparison
- Authors: Daniel Salnikov, Kevin Michalewicz, Dan Leonte,
- Abstract summary: We derive model-free prediction intervals that become tighter as the correlation between predictions and observations increases.
These intervals motivate the $textitLifted Coefficient of Determination$, a model comparison criterion for arbitrary loss functions.
We extend the prediction intervals to more general error distributions, and propose a fast model-free outlier detection algorithm for regression.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose the $\textit{lifted linear model}$, and derive model-free prediction intervals that become tighter as the correlation between predictions and observations increases. These intervals motivate the $\textit{Lifted Coefficient of Determination}$, a model comparison criterion for arbitrary loss functions in prediction-based settings, e.g., regression, classification or counts. We extend the prediction intervals to more general error distributions, and propose a fast model-free outlier detection algorithm for regression. Finally, we illustrate the framework via numerical experiments.
Related papers
- DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
We propose a novel approach called DistPred for regression and forecasting tasks.
We transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form.
This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable.
arXiv Detail & Related papers (2024-06-17T10:33:00Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Time Series Prediction under Distribution Shift using Differentiable
Forgetting [0.0]
We frame time series prediction under distribution shift as a weighted empirical risk minimisation problem.
The weighting of previous observations in the empirical risk is determined by a forgetting mechanism.
We propose a gradient-based learning method for the parameters of the forgetting mechanism.
arXiv Detail & Related papers (2022-07-23T10:32:37Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Conformal histogram regression [15.153110906331737]
This paper develops a conformal method to compute prediction intervals for non-parametric regression that can automatically adapt to skewed data.
Leveraging black-box machine learning algorithms, it translates their output into the shortest prediction intervals with approximate conditional coverage.
The resulting prediction intervals provably have marginal coverage in finite samples, while achieving conditional coverage and optimal length if the black-box model is consistent.
arXiv Detail & Related papers (2021-05-18T18:05:02Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Explainable boosted linear regression for time series forecasting [0.1876920697241348]
Time series forecasting involves collecting and analyzing past observations to develop a model to extrapolate such observations into the future.
We propose explainable boosted linear regression (EBLR) algorithm for time series forecasting.
arXiv Detail & Related papers (2020-09-18T22:31:42Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.