Unveiling the Key Factors for Distilling Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2502.18001v1
- Date: Tue, 25 Feb 2025 09:08:45 GMT
- Title: Unveiling the Key Factors for Distilling Chain-of-Thought Reasoning
- Authors: Xinghao Chen, Zhijing Sun, Wenjin Guo, Miaoran Zhang, Yanjun Chen, Yirong Sun, Hui Su, Yijie Pan, Dietrich Klakow, Wenjie Li, Xiaoyu Shen,
- Abstract summary: This study examines the factors influencing Chain-of-Thought (CoT) distillation in Small Language Models (SLMs)<n>We find that SLMs exhibit a non-monotonic relationship with granularity, with stronger models benefiting from finer-grained reasoning and weaker models performing better with simpler CoT supervision.<n>These findings emphasize the need to tailor CoT strategies to specific student model, offering actionable insights for optimizing CoT distillation in SLMs.
- Score: 33.02060729778806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) excel in reasoning tasks through Chain-of-Thought (CoT) prompting. However, CoT prompting greatly increases computational demands, which has prompted growing interest in distilling CoT capabilities into Small Language Models (SLMs). This study systematically examines the factors influencing CoT distillation, including the choice of granularity, format and teacher model. Through experiments involving four teacher models and seven student models across seven mathematical and commonsense reasoning datasets, we uncover three key findings: (1) Unlike LLMs, SLMs exhibit a non-monotonic relationship with granularity, with stronger models benefiting from finer-grained reasoning and weaker models performing better with simpler CoT supervision; (2) CoT format significantly impacts LLMs but has minimal effect on SLMs, likely due to their reliance on supervised fine-tuning rather than pretraining preferences; (3) Stronger teacher models do NOT always produce better student models, as diversity and complexity in CoT supervision can outweigh accuracy alone. These findings emphasize the need to tailor CoT strategies to specific student model, offering actionable insights for optimizing CoT distillation in SLMs. The code and datasets are available at https://github.com/EIT-NLP/Distilling-CoT-Reasoning.
Related papers
- Phi-4-Mini-Reasoning: Exploring the Limits of Small Reasoning Language Models in Math [135.1260782461186]
Chain-of-Thought (CoT) significantly enhances formal reasoning capabilities in Large Language Models (LLMs)
However, improving reasoning in Small Language Models (SLMs) remains challenging due to their limited model capacity.
We present a systematic training recipe for SLMs that consists of four steps: (1) large-scale mid-training on diverse distilled long-CoT data, (2) supervised fine-tuning on high-quality long-CoT data, (3) Rollout DPO leveraging a carefully curated preference dataset, and (4) Reinforcement Learning (RL) with Verifiable Reward.
arXiv Detail & Related papers (2025-04-30T00:04:35Z) - Innate Reasoning is Not Enough: In-Context Learning Enhances Reasoning Large Language Models with Less Overthinking [39.48406368755411]
Large Language Models (LLMs) have introduced Reasoning Large Language Models (RLLMs)
RLLMs exhibit innate Chain-of-Thought (CoT) reasoning capability obtained from training, leading to a natural question: "Is CoT prompting necessary to enhance the reasoning capability of RLLMs?"
We present the first comprehensive analysis of the impacts of Zero-shot CoT and Few-shot CoT on RLLMs across mathematical reasoning tasks.
arXiv Detail & Related papers (2025-03-25T12:37:22Z) - LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT)<n>We find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA)<n>With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks.
arXiv Detail & Related papers (2025-02-11T08:48:48Z) - Mentor-KD: Making Small Language Models Better Multi-step Reasoners [15.159415340059388]
We propose Mentor-KD, which effectively distills the multi-step reasoning capability of LLMs to smaller LMs.
We exploit a mentor, intermediate-sized task-specific fine-tuned model, to augment additional CoT annotations.
We conduct extensive experiments and confirm Mentor-KD's effectiveness across various models and complex reasoning tasks.
arXiv Detail & Related papers (2024-10-11T17:53:27Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - AS-ES Learning: Towards Efficient CoT Learning in Small Models [35.225382243612174]
Chain-of-Thought (CoT) serves as a critical emerging ability in Large Language Models (LLMs)
We propose a new training paradigm AS-ES (Abstractive Segments - Extractive Segments) learning, which exploits the inherent information in CoT for iterative generation.
Experiments show that our methods surpass the direct seq2seq training on CoT-extensive tasks like MWP and PET summarization, without data augmentation or altering the model itself.
arXiv Detail & Related papers (2024-03-04T12:13:59Z) - DisCo: Distilled Student Models Co-training for Semi-supervised Text
Mining [23.418419374791107]
DisCo is a semi-supervised learning framework for fine-tuning a cohort of small student models generated from a large PLM.
We show that DisCo can produce student models that are 7.6 times smaller and 4.8 times faster in inference than the baseline PLMs.
arXiv Detail & Related papers (2023-05-20T03:23:16Z) - SCOTT: Self-Consistent Chain-of-Thought Distillation [68.40232422158569]
Large language models (LMs) generate free-text rationales for their predictions via chain-of-thought prompting.
We propose a faithful knowledge distillation method to learn a small, self-consistent CoT model from a teacher model that is orders of magnitude larger.
To ensure faithful distillation, we use the teacher-generated rationales to learn a student LM with a counterfactual reasoning objective.
arXiv Detail & Related papers (2023-05-03T03:47:00Z) - Large Language Models Are Reasoning Teachers [9.290757451344673]
Fine-tune-CoT is a method that generates reasoning samples from very large teacher models to fine-tune smaller models.
We find that Fine-tune-CoT enables substantial reasoning capability in small models, far outperforming prompt-based baselines and even the teacher model in many tasks.
arXiv Detail & Related papers (2022-12-20T08:24:45Z) - Distilling Reasoning Capabilities into Smaller Language Models [83.66051257039763]
Step-by-step reasoning approaches like chain of thought (CoT) have proved to be very effective in inducing reasoning capabilities in large language models.
However, the success of the CoT approach is fundamentally tied to the model size, and billion parameter-scale models are often needed to get CoT to work.
We propose a knowledge distillation approach that leverages the step-by-step CoT reasoning capabilities of larger models and distills these abilities into smaller models.
arXiv Detail & Related papers (2022-12-01T00:39:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.