AI in Archival Science -- A Systematic Review
- URL: http://arxiv.org/abs/2410.09086v1
- Date: Mon, 7 Oct 2024 14:39:12 GMT
- Title: AI in Archival Science -- A Systematic Review
- Authors: Gaurav Shinde, Tiana Kirstein, Souvick Ghosh, Patricia C. Franks,
- Abstract summary: This study underscores the benefits of integrating artificial intelligence (AI) within the broad realm of archival science.
Our findings highlight key AI driven strategies that promise to streamline record-keeping processes and enhance data retrieval efficiency.
- Score: 0.9749638953163389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid expansion of records creates significant challenges in management, including retention and disposition, appraisal, and organization. Our study underscores the benefits of integrating artificial intelligence (AI) within the broad realm of archival science. In this work, we start by performing a thorough analysis to understand the current use of AI in this area and identify the techniques employed to address challenges. Subsequently, we document the results of our review according to specific criteria. Our findings highlight key AI driven strategies that promise to streamline record-keeping processes and enhance data retrieval efficiency. We also demonstrate our review process to ensure transparency regarding our methodology. Furthermore, this review not only outlines the current state of AI in archival science and records management but also lays the groundwork for integrating new techniques to transform archival practices. Our research emphasizes the necessity for enhanced collaboration between the disciplines of artificial intelligence and archival science.
Related papers
- Automating Chapter-Level Classification for Electronic Theses and Dissertations [0.0]
We propose a machine learning and AI-driven solution to automatically categorize ETD chapters.
This solution is intended to improve discoverability and promote understanding of chapters.
We aim to support interdisciplinary research and make ETDs more accessible.
arXiv Detail & Related papers (2024-11-26T17:27:18Z) - O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey.
Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects.
We propose the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process.
arXiv Detail & Related papers (2024-10-08T15:13:01Z) - Artificial Intuition: Efficient Classification of Scientific Abstracts [42.299140272218274]
Short scientific texts efficiently transmit dense information to experts possessing a rich body of knowledge to aid interpretation.
To address this gap, we have developed a novel approach to generate and appropriately assign coarse domain-specific labels.
We show that a Large Language Model (LLM) can provide metadata essential to the task, in a process akin to the augmentation of supplemental knowledge.
arXiv Detail & Related papers (2024-07-08T16:34:47Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
This study aims to analyze various hierarchical and incremental clustering techniques.
The main contribution of this research is the organization and comparison of the techniques used by studies published between 2010 and 2018 that aimed to texts documents clustering.
arXiv Detail & Related papers (2023-12-12T22:27:29Z) - Explainable Authorship Identification in Cultural Heritage Applications:
Analysis of a New Perspective [48.031678295495574]
We explore the applicability of existing general-purpose eXplainable Artificial Intelligence (XAI) techniques to AId.
In particular, we assess the relative merits of three different types of XAI techniques on three different AId tasks.
Our analysis shows that, while these techniques make important first steps towards explainable Authorship Identification, more work remains to be done.
arXiv Detail & Related papers (2023-11-03T20:51:15Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
We examine a notable yet understudied AI design process in the legal domain that took place over a decade ago.
We show how an interactive simulation methodology allowed computer scientists and lawyers to become co-designers.
arXiv Detail & Related papers (2022-03-08T15:46:52Z) - A curated, ontology-based, large-scale knowledge graph of artificial
intelligence tasks and benchmarks [4.04540578484476]
Intelligence Task Ontology and Knowledge Graph (ITO) is a comprehensive resource on artificial intelligence tasks, benchmark results and performance metrics.
ITO is a richly structured and manually curated resource on artificial intelligence tasks, benchmark results and performance metrics.
The goal of ITO is to enable precise and network-based analyses of the global landscape of AI tasks and capabilities.
arXiv Detail & Related papers (2021-10-04T13:25:53Z) - MAIR: Framework for mining relationships between research articles,
strategies, and regulations in the field of explainable artificial
intelligence [2.280298858971133]
It is essential to understand the dynamics of the impact of regulation on research papers and AI-related policies.
This paper introduces a novel framework for joint analysis of AI-related policy documents and XAI research papers.
arXiv Detail & Related papers (2021-07-29T20:41:17Z) - Artificial Intelligence Technologies in Education: Benefits, Challenges
and Strategies of Implementation [8.54335661175611]
We have identified the benefits and challenges of implementing artificial intelligence in the education sector.
We have also reviewed modern AI technologies for learners and educators, currently available on the software market.
We have developed a strategy implementation model, described by a five-stage, generic process, along with the corresponding configuration guide.
arXiv Detail & Related papers (2021-02-11T11:09:41Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - A Methodology for Creating AI FactSheets [67.65802440158753]
This paper describes a methodology for creating the form of AI documentation we call FactSheets.
Within each step of the methodology, we describe the issues to consider and the questions to explore.
This methodology will accelerate the broader adoption of transparent AI documentation.
arXiv Detail & Related papers (2020-06-24T15:08:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.