AI-Enabled Knowledge Sharing for Enhanced Collaboration and Decision-Making in Non-Profit Healthcare Organizations: A Scoping Review Protocol
- URL: http://arxiv.org/abs/2503.07540v1
- Date: Mon, 10 Mar 2025 17:09:12 GMT
- Title: AI-Enabled Knowledge Sharing for Enhanced Collaboration and Decision-Making in Non-Profit Healthcare Organizations: A Scoping Review Protocol
- Authors: Maurice Ongala, Ruth Kiraka, Jyoti Choundrie, Javan Okello,
- Abstract summary: This protocol outlines a scoping review designed to systematically map the existing body of evidence on AI-enabled knowledge sharing in non-profit healthcare organizations.<n>The review aims to investigate how such technologies enhance collaboration and decision-making, particularly in the context of reduced external support following the cessation of USAID operations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This protocol outlines a scoping review designed to systematically map the existing body of evidence on AI-enabled knowledge sharing in resource-limited non-profit healthcare organizations. The review aims to investigate how such technologies enhance collaboration and decision-making, particularly in the context of reduced external support following the cessation of USAID operations. Guided by three theoretical frameworks namely, the Resource-Based View, Dynamic Capabilities Theory, and Absorptive Capacity Theory, this study will explore the dual role of AI as a strategic resource and an enabler of organizational learning and agility. The protocol details a rigorous methodological approach based on PRISMA-ScR guidelines, encompassing a systematic search strategy across multiple databases, inclusion and exclusion criteria, and a structured data extraction process. By integrating theoretical insights with empirical evidence, this scoping review seeks to identify critical gaps in the literature and inform the design of effective, resource-optimized AI solutions in non-profit healthcare settings.
Related papers
- A Comprehensive Survey on Integrating Large Language Models with Knowledge-Based Methods [4.686190098233778]
The paper highlights the benefits of integrating generative AI with knowledge bases, including improved data contextualization, enhanced model accuracy, and better utilization of knowledge resources.<n>The findings provide a detailed overview of the current state of research, identify key gaps, and offer actionable recommendations.
arXiv Detail & Related papers (2025-01-19T23:25:21Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - Enhancing Medical Learning and Reasoning Systems: A Boxology-Based Comparative Analysis of Design Patterns [0.0]
This study analyzes hybrid AI systems' design patterns and their effectiveness in clinical decision-making.
Boxology's structured, modular apporach offers significant advantages in developing and analyzing hybrid AI systems.
arXiv Detail & Related papers (2024-08-05T12:53:04Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge.
Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques.
This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies.
arXiv Detail & Related papers (2024-03-20T02:21:44Z) - Key Design Choices in Source-Free Unsupervised Domain Adaptation: An
In-depth Empirical Analysis [16.0130560365211]
This study provides a benchmark framework for Source-Free Unsupervised Domain Adaptation (SF-UDA) in image classification.
The study empirically examines a diverse set of SF-UDA techniques, assessing their consistency across datasets.
It exhaustively evaluates pre-training datasets and strategies, particularly focusing on both supervised and self-supervised methods.
arXiv Detail & Related papers (2024-02-25T13:37:36Z) - AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis [0.0]
This study examines 1,903 articles from Google Scholar and Web of Science, with 54 studies selected through PRISMA guidelines.<n>Our findings reveal that ML models, including Random Forest, XGBoost, and hybrid approaches, significantly enhance risk prediction accuracy and adaptability in post-pandemic contexts.<n>The study underscores the necessity of dynamic strategies, interdisciplinary collaboration, and continuous model evaluation to address challenges such as data quality and interpretability.
arXiv Detail & Related papers (2023-12-12T17:47:51Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.<n>This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.<n>We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Generalization Bounds: Perspectives from Information Theory and PAC-Bayes [31.803107987439784]
The PAC-Bayesian approach has been established as a flexible framework to address the generalization capabilities of machine learning algorithms.
An information-theoretic view of generalization has developed, wherein the relation between generalization and various information measures has been established.
We present techniques and results that the two perspectives have in common, and discuss the approaches and interpretations that differ.
arXiv Detail & Related papers (2023-09-08T15:23:40Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
Cross-modal reasoning (CMR) has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics.
This survey delves into the realm of interpretable cross-modal reasoning (I-CMR)
This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR.
arXiv Detail & Related papers (2023-09-05T05:06:48Z) - ChatGPT-HealthPrompt. Harnessing the Power of XAI in Prompt-Based
Healthcare Decision Support using ChatGPT [15.973406739758856]
This study presents an innovative approach to the application of large language models (LLMs) in clinical decision-making, focusing on OpenAI's ChatGPT.
Our approach introduces the use of contextual prompts-strategically designed to include task description, feature description, and crucially, integration of domain knowledge-for high-quality binary classification tasks even in data-scarce scenarios.
arXiv Detail & Related papers (2023-08-17T20:50:46Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.