An Instrumental Value for Data Production and its Application to Data Pricing
- URL: http://arxiv.org/abs/2412.18140v1
- Date: Tue, 24 Dec 2024 03:53:57 GMT
- Title: An Instrumental Value for Data Production and its Application to Data Pricing
- Authors: Rui Ai, Boxiang Lyu, Zhaoran Wang, Zhuoran Yang, Haifeng Xu,
- Abstract summary: This paper develops an approach for capturing the instrumental value of data production processes.
We show how they connect to classic notions of information design and signals in information economics.
- Score: 107.98697414652479
- License:
- Abstract: How much value does a dataset or a data production process have to an agent who wishes to use the data to assist decision-making? This is a fundamental question towards understanding the value of data as well as further pricing of data. This paper develops an approach for capturing the instrumental value of data production processes, which takes two key factors into account: (a) the context of the agent's decision-making problem; (b) prior data or information the agent already possesses. We ''micro-found'' our valuation concepts by showing how they connect to classic notions of information design and signals in information economics. When instantiated in the domain of Bayesian linear regression, our value naturally corresponds to information gain. Based on our designed data value, we then study a basic monopoly pricing setting with a buyer looking to purchase from a seller some labeled data of a certain feature direction in order to improve a Bayesian regression model. We show that when the seller has the ability to fully customize any data request, she can extract the first-best revenue (i.e., full surplus) from any population of buyers, i.e., achieving first-degree price discrimination. If the seller can only sell data that are derived from an existing data pool, this limits her ability to customize, and achieving first-best revenue becomes generally impossible. However, we design a mechanism that achieves seller revenue at most $\log (\kappa)$ less than the first-best revenue, where $\kappa$ is the condition number associated with the data matrix. A corollary of this result is that the seller can extract the first-best revenue in the multi-armed bandits special case.
Related papers
- Private, Augmentation-Robust and Task-Agnostic Data Valuation Approach for Data Marketplace [56.78396861508909]
PriArTa is an approach for computing the distance between the distribution of the buyer's existing dataset and the seller's dataset.
PriArTa is communication-efficient, enabling the buyer to evaluate datasets without needing access to the entire dataset from each seller.
arXiv Detail & Related papers (2024-11-01T17:13:14Z) - Data Distribution Valuation [56.71023681599737]
Existing data valuation methods define a value for a discrete dataset.
In many use cases, users are interested in not only the value of the dataset, but that of the distribution from which the dataset was sampled.
We propose a maximum mean discrepancy (MMD)-based valuation method which enables theoretically principled and actionable policies.
arXiv Detail & Related papers (2024-10-06T07:56:53Z) - Reframing Data Value for Large Language Models Through the Lens of Plausibility [6.697702130929693]
We propose an alternative perspective on the data value problem for language models.
We develop a novel value function that is computationally tractable and derived from first principles with provable properties.
arXiv Detail & Related papers (2024-08-30T22:32:24Z) - Cost-Effective Proxy Reward Model Construction with On-Policy and Active Learning [70.22819290458581]
Reinforcement learning with human feedback (RLHF) is a widely adopted approach in current large language model pipelines.
Our approach introduces two key innovations: (1) on-policy query to avoid OOD and imbalance issues in seed data, and (2) active learning to select the most informative data for preference queries.
arXiv Detail & Related papers (2024-07-02T10:09:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Fundamentals of Task-Agnostic Data Valuation [21.78555506720078]
We study valuing the data of a data owner/seller for a data seeker/buyer.
We focus on task-agnostic data valuation without any validation requirements.
arXiv Detail & Related papers (2022-08-25T22:07:07Z) - Data Sharing Markets [95.13209326119153]
We study a setup where each agent can be both buyer and seller of data.
We consider two cases: bilateral data exchange (trading data with data) and unilateral data exchange (trading data with money)
arXiv Detail & Related papers (2021-07-19T06:00:34Z) - Data Appraisal Without Data Sharing [28.41079503636652]
We develop methods that do not require data sharing by using secure multi-party computation.
Our experiments show that influence functions provide an appealing trade-off between high-quality appraisal and required computation.
arXiv Detail & Related papers (2020-12-11T15:45:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.