論文の概要: IceDiff: High Resolution and High-Quality Sea Ice Forecasting with Generative Diffusion Prior
- arxiv url: http://arxiv.org/abs/2410.09111v1
- Date: Thu, 10 Oct 2024 08:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 16:38:28.639593
- Title: IceDiff: High Resolution and High-Quality Sea Ice Forecasting with Generative Diffusion Prior
- Title(参考訳): IceDiff: 生成拡散前の高分解能・高品質海氷予測
- Authors: Jingyi Xu, Siwei Tu, Weidong Yang, Shuhao Li, Keyi Liu, Yeqi Luo, Lipeng Ma, Ben Fei, Lei Bai,
- Abstract要約: より微細なスケールで海氷濃度を予測するための2段階の深層学習フレームワークIceDiffを提案する。
アイスディフは6.25km×6.25kmの解像度で海氷の予測を初めて示した。
- 参考スコア(独自算出の注目度): 19.7258955384779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variation of Arctic sea ice has significant impacts on polar ecosystems, transporting routes, coastal communities, and global climate. Tracing the change of sea ice at a finer scale is paramount for both operational applications and scientific studies. Recent pan-Arctic sea ice forecasting methods that leverage advances in artificial intelligence has made promising progress over numerical models. However, forecasting sea ice at higher resolutions is still under-explored. To bridge the gap, we propose a two-staged deep learning framework, IceDiff, to forecast sea ice concentration at finer scales. IceDiff first leverages an independently trained vision transformer to generate coarse yet superior forecasting over previous methods at a regular 25km x 25km grid. This high-quality sea ice forecasting can be utilized as reliable guidance for the next stage. Subsequently, an unconditional diffusion model pre-trained on sea ice concentration maps is utilized for sampling down-scaled sea ice forecasting via a zero-shot guided sampling strategy and a patch-based method. For the first time, IceDiff demonstrates sea ice forecasting with the 6.25km x 6.25km resolution. IceDiff extends the boundary of existing sea ice forecasting models and more importantly, its capability to generate high-resolution sea ice concentration data is vital for pragmatic usages and research.
- Abstract(参考訳): 北極海氷の変動は、極地生態系、輸送ルート、沿岸社会、地球規模の気候に大きな影響を与えている。
より微細なスケールで海氷の変化を追跡することは、運用用途と科学研究の両方において最重要である。
人工知能の進歩を生かした最近のパン・アーキティック海氷予測手法は、数値モデルよりも有望な進歩を遂げた。
しかし、高解像度の海氷の予測はまだ未定である。
このギャップを埋めるために、より微細なスケールで海氷濃度を予測するための2段階の深層学習フレームワーク、IceDiffを提案する。
IceDiffはまず独立に訓練された視覚変換器を利用して、通常の25km×25kmのグリッドで従来の方法よりも粗いが優れた予測を生成する。
この高品質な海氷予測は、次の段階の信頼性の高いガイダンスとして利用することができる。
その後, 海氷濃度マップ上に事前学習した非条件拡散モデルを用いて, ゼロショット誘導サンプリング戦略とパッチベースの手法を用いて, 下層海氷の予測をサンプリングする。
アイスディフは6.25km×6.25kmの解像度で海氷の予測を初めて示した。
アイスディフは既存の海氷予測モデルの境界を拡張し、さらに重要なことは、高解像度の海氷濃度データを生成する能力は実用的利用と研究に欠かせないことである。
関連論文リスト
- Unicorn: U-Net for Sea Ice Forecasting with Convolutional Neural Ordinary Differential Equations [6.4020980835163765]
本稿では,毎週の海氷予測を目的とした,Unicornという新しい深層建築について紹介する。
本モデルでは,アーキテクチャ内に複数の時系列画像を統合することにより,予測性能を向上する。
論文 参考訳(メタデータ) (2024-05-07T01:17:06Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
本稿ではLANE-SIという適応的な代理モデル手法を提案する。
異なる損失関数を持つ比較的単純な深層学習モデルのアンサンブルを用いて、特定水域における海氷濃度の予測を行う。
我々は,カラ海における最先端物理ベースの予測システムSEAS5に対して,20%の改善を実現している。
論文 参考訳(メタデータ) (2023-12-07T14:48:30Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
我々は,北極海氷濃度(SIC)予測のためのMT-IceNet - UNetに基づく空間・多時間深層学習モデルを提案する。
提案モデルでは,6ヶ月のリードタイムで予測誤差を最大60%低減し,画素ごとのSIC予測に有望な予測性能を提供する。
論文 参考訳(メタデータ) (2023-08-08T18:18:31Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Sea Ice Forecasting using Attention-based Ensemble LSTM [4.965782577704965]
本研究では,月毎の海氷範囲を最大1カ月前に予測するための,注意に基づくLong Short Term Memory(LSTM)アンサンブル手法を提案する。
日毎および月毎の衛星海氷データと,39年間にわたるERA5再分析から得られた大気および海洋の変動データを用いて,本手法がいくつかのベースラインを上回り,最近提案された深層学習モデルより優れていることを示す。
論文 参考訳(メタデータ) (2021-07-27T21:37:29Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya [54.12023102155757]
氷河マッピングは、hkh領域における生態モニタリングの鍵となる。
気候変動は、氷河生態系の健康に依存している個人にリスクを与える。
本稿では,氷河に着目した環境モニタリングを支援する機械学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-09T12:48:06Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。