Resource-Constrained Heuristic for Max-SAT
- URL: http://arxiv.org/abs/2410.09173v1
- Date: Fri, 11 Oct 2024 18:20:08 GMT
- Title: Resource-Constrained Heuristic for Max-SAT
- Authors: Brian Matejek, Daniel Elenius, Cale Gentry, David Stoker, Adam Cobb,
- Abstract summary: We propose a resource-constrained for instances of Max-SAT that iteratively decomposes a larger problem into smaller subcomponents.
We analyze a set of variable selection methods, including a novel graph-based method that exploits the structure of a given SAT instance.
We demonstrate our results on a set of randomly generated Max-SAT instances as well as real world examples from the Max-SAT evaluation benchmarks.
- Score: 0.848762374187855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a resource-constrained heuristic for instances of Max-SAT that iteratively decomposes a larger problem into smaller subcomponents that can be solved by optimized solvers and hardware. The unconstrained outer loop maintains the state space of a given problem and selects a subset of the SAT variables for optimization independent of previous calls. The resource-constrained inner loop maximizes the number of satisfiable clauses in the "sub-SAT" problem. Our outer loop is agnostic to the mechanisms of the inner loop, allowing for the use of traditional solvers for the optimization step. However, we can also transform the selected "sub-SAT" problem into a quadratic unconstrained binary optimization (QUBO) one and use specialized hardware for optimization. In contrast to existing solutions that convert a SAT instance into a QUBO one before decomposition, we choose a subset of the SAT variables before QUBO optimization. We analyze a set of variable selection methods, including a novel graph-based method that exploits the structure of a given SAT instance. The number of QUBO variables needed to encode a (sub-)SAT problem varies, so we additionally learn a model that predicts the size of sub-SAT problems that will fit a fixed-size QUBO solver. We empirically demonstrate our results on a set of randomly generated Max-SAT instances as well as real world examples from the Max-SAT evaluation benchmarks and outperform existing QUBO decomposer solutions.
Related papers
- GraSS: Combining Graph Neural Networks with Expert Knowledge for SAT Solver Selection [45.222591894755105]
We present GraSS, a novel approach for automatic SAT solver selection based on tripartite graph representations of instances.
We enrich the graph representation with domain-specific decisions, such as novel node feature design.
We demonstrate that this combination of raw representations and domain-specific choices leads to improvements in runtime.
arXiv Detail & Related papers (2024-05-17T18:00:50Z) - AutoSAT: Automatically Optimize SAT Solvers via Large Language Models [10.359005620433136]
We propose AutoSAT, a framework that automatically optimizes in a pre-defined modular search space based on existing CDCL solvers.
A realization of AutoSAT outperforms MiniSat on 9 out of 12 datasets and even surpasses the state-of-the-art hybrid solver Kissat on 4 datasets.
arXiv Detail & Related papers (2024-02-16T14:04:56Z) - General Method for Solving Four Types of SAT Problems [12.28597116379225]
Existing methods provide varying algorithms for different types of Boolean satisfiability problems (SAT)
This study proposes a unified framework DCSAT based on integer programming and reinforcement learning (RL) algorithm to solve different types of SAT problems.
arXiv Detail & Related papers (2023-12-27T06:09:48Z) - Decomposing Hard SAT Instances with Metaheuristic Optimization [52.03315747221343]
We introduce the notion of decomposition hardness (d-hardness)
We show that the d-hardness expresses an estimate of the hardness of $C$ w.r.t.
arXiv Detail & Related papers (2023-12-16T12:44:36Z) - Machine Learning for SAT: Restricted Heuristics and New Graph
Representations [0.8870188183999854]
SAT is a fundamental NP-complete problem with many applications, including automated scheduling.
To solve large instances, SAT solvers have to rely on Booleans, e.g., choosing a branching variable in DPLL and CDCL solvers.
We suggest a strategy of making a few initial steps with a trained ML model and then releasing control to classical runtimes.
arXiv Detail & Related papers (2023-07-18T10:46:28Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Estimating the hardness of SAT encodings for Logical Equivalence
Checking of Boolean circuits [58.83758257568434]
We show that the hardness of SAT encodings for LEC instances can be estimated textitw.r.t some SAT partitioning.
The paper proposes several methods for constructing partitionings, which, when used in practice, allow one to estimate the hardness of SAT encodings for LEC with good accuracy.
arXiv Detail & Related papers (2022-10-04T09:19:13Z) - SATformer: Transformer-Based UNSAT Core Learning [0.0]
This paper introduces SATformer, a Transformer-based approach for the Boolean Satisfiability (SAT) problem.
Rather than solving the problem directly, SATformer approaches the problem from the opposite direction by focusing on unsatisfiability.
SATformer is trained through a multi-task learning approach, using the single-bit satisfiability result and the minimal unsatisfiable core.
Experimental results show that our SATformer can decrease the runtime of existing solvers by an average of 21.33%.
arXiv Detail & Related papers (2022-09-02T11:17:39Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNF-based SAT and MaxSAT solvers are central to logic synthesis and verification systems.
In this work, we propose a one-shot model derived from the Transformer architecture to solve the MaxSAT problem.
arXiv Detail & Related papers (2021-07-15T04:47:35Z) - Incomplete MaxSAT Approaches for Combinatorial Testing [0.0]
We present a Satisfiability (SAT)-based approach for building Mixed Covering Arrays with Constraints of minimum length.
This problem is central in Combinatorial Testing for the detection of system failures.
arXiv Detail & Related papers (2021-05-26T14:00:56Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.