Conditional Motional Squeezing of an Optomechanical Oscillator Approaching the Quantum Regime
- URL: http://arxiv.org/abs/2410.09208v1
- Date: Fri, 11 Oct 2024 19:23:20 GMT
- Title: Conditional Motional Squeezing of an Optomechanical Oscillator Approaching the Quantum Regime
- Authors: Benjamin B. Lane, Junxin Chen, Ronald E. Pagano, Scott Aronson, Garrett D. Cole, Xinghui Yin, Thomas R. Corbitt, Nergis Mavalvala,
- Abstract summary: This work paves the way to real-time measurement-based preparation of macroscopic oscillators in quantum squeezed states.
It can be adapted to mechanical systems as large as the kg-scale test masses of the Laser Interferometer Gravitational-Wave Observatory.
- Score: 3.5369433254206752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Squeezed mechanical states are a valuable tool for quantum sensing and error correction in quantum computing, and a pivotal platform for tests of fundamental physics. Recently, solid state mechanical oscillators have been prepared in squeezed states using parametric interactions in both the microwave and optical regimes. It has long been predicted that a fast measurement rate comparable to the mechanical resonance frequency can prepare the oscillator under measurement into a quantum squeezed state. Despite decades of effort, this straightforward protocol is yet to be demonstrated in the quantum regime. Here, we use post-processing techniques to demonstrate preparation of a 50 ng GaAs cantilever in a conditional classical squeezed state with a minimum uncertainty (0.28 plus/minus 0.18) dB above (1.07 plus/minus 0.04 times) the zero point fluctuations, 3 orders of magnitude closer to the quantum regime in variance than the previous record. This paves the way to real-time measurement-based preparation of macroscopic oscillators in quantum squeezed states, and can be adapted to mechanical systems as large as the kg-scale test masses of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - A squeezed mechanical oscillator with milli-second quantum decoherence [0.0]
We introduce a superconducting circuit optomechanical platform which exhibits a low quantum decoherence.
This allows us to prepare the quantum ground and squeezed states of motion with high fidelity.
We observe the free evolution of mechanical squeezed state, preserving its non-classical nature over milli-second timescales.
arXiv Detail & Related papers (2022-08-27T20:17:24Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum state preparation, tomography, and entanglement of mechanical
oscillators [0.0]
We use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators.
Our result represents a concrete step toward feedback-based operation of a quantum acoustic processor.
arXiv Detail & Related papers (2021-10-14T17:28:25Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Strong angular momentum optomechanical coupling for macroscopic quantum
control [5.693393434312775]
We propose a quantum optomechanical system involving exchange interaction between spin angular momentum of light and a torsional oscillator.
We demonstrate that this system allows coherent control of the torsional quantum state of a torsional oscillator on the single photon level.
Our work provides a platform to verify the validity of quantum mechanics in macroscopic systems on the micrometer and even centimeter scale.
arXiv Detail & Related papers (2021-09-29T03:18:48Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Verification of conditional mechanical squeezing for a mg-scale pendulum
near quantum regimes [0.39102514525861415]
In quantum mechanics, measurement can be used to prepare a quantum state.
We demonstrate conditional mechanical squeezing of a mg-scale suspended mirror near quantum regimes.
arXiv Detail & Related papers (2020-08-25T07:05:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.