論文の概要: Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
- arxiv url: http://arxiv.org/abs/2410.09239v1
- Date: Fri, 11 Oct 2024 20:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:33:30.174551
- Title: Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
- Title(参考訳): 潜在クロネッカー構造を用いた曲線予測学習のためのガウス過程のスケーリング
- Authors: Jihao Andreas Lin, Sebastian Ament, Maximilian Balandat, Eytan Bakshy,
- Abstract要約: GPモデルは,学習曲線予測タスクにおいて,トランスフォーマーの性能と一致することを示す。
我々の方法は、$mathcalO(n3 + m3)$ timeと$mathcalO(n2 + m2)$ spaceのみを必要とする。
- 参考スコア(独自算出の注目度): 16.319561844942886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key task in AutoML is to model learning curves of machine learning models jointly as a function of model hyper-parameters and training progression. While Gaussian processes (GPs) are suitable for this task, na\"ive GPs require $\mathcal{O}(n^3m^3)$ time and $\mathcal{O}(n^2 m^2)$ space for $n$ hyper-parameter configurations and $\mathcal{O}(m)$ learning curve observations per hyper-parameter. Efficient inference via Kronecker structure is typically incompatible with early-stopping due to missing learning curve values. We impose $\textit{latent Kronecker structure}$ to leverage efficient product kernels while handling missing values. In particular, we interpret the joint covariance matrix of observed values as the projection of a latent Kronecker product. Combined with iterative linear solvers and structured matrix-vector multiplication, our method only requires $\mathcal{O}(n^3 + m^3)$ time and $\mathcal{O}(n^2 + m^2)$ space. We show that our GP model can match the performance of a Transformer on a learning curve prediction task.
- Abstract(参考訳): AutoMLの重要なタスクは、モデルハイパーパラメータとトレーニング進捗の関数として、機械学習モデルの学習曲線を共同でモデル化することである。
ガウス過程 (GPs) はこのタスクに適しているが、na\"ive GPs は $\mathcal{O}(n^3m^3)$ time と $\mathcal{O}(n^2 m^2)$ space for $n$ hyper-parameter configurations and $\mathcal{O}(m)$ learning curve observed per hyper-parameter。
クロネッカー構造による効率的な推論は、学習曲線の値の欠如により、典型的にはアーリーストッピングとは相容れない。
不足した値を処理しながら、効率的な製品カーネルを活用するために、$\textit{latent Kronecker structure}$を課します。
特に、観測値の合同共分散行列を潜在クロネッカー積の射影として解釈する。
反復線形解法と構造化行列ベクトル乗法を組み合わせると、この方法は $\mathcal{O}(n^3 + m^3)$ time と $\mathcal{O}(n^2 + m^2)$ space しか必要としない。
GPモデルは,学習曲線予測タスクにおいて,トランスフォーマーの性能と一致することを示す。
関連論文リスト
- Highly Adaptive Ridge [84.38107748875144]
直交可積分な部分微分を持つ右連続函数のクラスにおいて,$n-2/3$自由次元L2収束率を達成する回帰法を提案する。
Harは、飽和ゼロオーダーテンソル積スプライン基底展開に基づいて、特定のデータ適応型カーネルで正確にカーネルリッジレグレッションを行う。
我々は、特に小さなデータセットに対する最先端アルゴリズムよりも経験的性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:06:06Z) - Operator Learning with Gaussian Processes [0.18641315013048293]
演算子学習は、関数の無限次元空間間の近似写像 $mathcalGdagger:mathcalU rightarrowmathcalV$ に焦点を当てる。
両手法の長所を生かした演算子学習のためのGP/NNベースのハイブリッドフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-06T18:06:08Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - Scalable First-Order Bayesian Optimization via Structured Automatic
Differentiation [4.061135251278187]
広い範囲のカーネルが構造化行列を生じさせ、勾配観測のための正確な$mathcalO(n2d)$Matrix-vector multiplyとヘッセン観測のための$mathcalO(n2d2)$を可能にした。
提案手法は,ほぼすべての標準カーネルに適用され,ニューラルネットワーク,放射基底関数ネットワーク,スペクトル混合カーネルなどの複雑なカーネルに自動的に拡張される。
論文 参考訳(メタデータ) (2022-06-16T17:59:48Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
トレーニングデータが$n$エージェントに分散されるネットワーク上での分散機械学習を検討する。
エージェントの共通の目標は、すべての局所損失関数の平均を最小化するモデルを見つけることである。
ノイズのない場合、$p$を$mathcalO(p-1)$から$mathcalO(p-1)$に改善します。
論文 参考訳(メタデータ) (2022-02-08T12:58:14Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Model Selection with Near Optimal Rates for Reinforcement Learning with
General Model Classes [27.361399036211694]
有限地平線エピソディック強化学習(RL)問題に対するモデル選択の問題に対処する。
モデル選択フレームワークでは、$mathcalP*$の代わりに、遷移カーネルのネストされたファミリーが$M$を与えられる。
textttARL-GENが$TildemathcalO(d_mathcalE* H2+sqrtd_mathcalE* mathbbM* H2T)$の後悔を得ることを示す。
論文 参考訳(メタデータ) (2021-07-13T05:00:38Z) - Large-time asymptotics in deep learning [0.0]
トレーニングにおける最終時間の$T$(対応するResNetの深さを示す可能性がある)の影響について検討する。
古典的な$L2$-正規化経験的リスク最小化問題に対して、トレーニングエラーが$mathcalOleft(frac1Tright)$のほとんどであることを示す。
$ellp$-距離損失の設定において、トレーニングエラーと最適パラメータの両方が$mathcalOleft(e-mu)の順序のほとんどであることを示す。
論文 参考訳(メタデータ) (2020-08-06T07:33:17Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z) - Learning nonlinear dynamical systems from a single trajectory [102.60042167341956]
我々は、$x_t+1=sigma(Thetastarx_t)+varepsilon_t$という形の非線形力学系を学ぶアルゴリズムを導入する。
最適なサンプル複雑性と線形ランニング時間を持つ単一軌道から重み行列$Thetastar$を復元するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-30T10:42:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。